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Dissertation Abstract

My dissertation research includes the essays on two topics: (a). Integrated 

risk management (combined Operational and Financial Hedging) approaches 

to global production planning issues (co-work with Lingxiu Dong and Panos 

Kouvelis); (b). Dynamic revenue management approaches to optimizing 

multi-class customer demand fulfillment (co-work with Panos Kouvelis and 

Joseph Milner).

In the risk management essays, we study the implications of financial 

hedging policies on location and production planning decisions of risk 

averse global firms in the presence of demand and exchange rate 

uncertainty. We consider that a firm can choose production location between 

his home country and a foreign country and sell to both local and foreign 

markets. In the first stage a capacity, a financial hedging contract and the 

location of production center are decided in the presence of demand and 

exchange rate uncertainty. In the second stage, after the realization of 

demand and exchange rate, a production “allocation” decision (e.g., how 

many units to localize in home market and distribute to the foreign market) 

is made in order to optimize profits. The second stage allocation decision 

(referred to as an “allocation” option) is the firm’s real option serving as an 

operational hedge of the demand and exchange rate uncertainty. We want to 

understand the role of the allocation option and financial hedging on the 

production location and planning decisions.

For a stochastic foreign market, given a capacity and using a group of 

call option currency contracts at the prespecified exercise prices, the optimal
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hedging sizes are the unique solutions to the linear equations. The optimal 

capacity is uniquely determined by close formulation for the independent 

case (i.e. demand being independent with exchange rate) when using a single 

call option with exercise price equal to the ratio of the localization cost and 

selling price (i.e. r / p ).

Our analysis clearly shows that the financial hedge consists of two 

separated parts: one minimizing the profit variance and the other balancing 

the cost of purchasing financial hedging contracts (e.g. the “risk premium”). 

The risk premium is small in the most practical environments and its effect 

on hedging size is independent with production decisions. Thus, we present 

strong results by ignoring the risk premium and focusing on minimizing the 

profit variance. For the independent case with zero risk premium, the 

optimal financial hedging policy, among all combinations of call options, 

put options and forwards contracts, is a single call option with exercise price 

equal to r /  p . The optimal hedging size and capacity are uniquely 

determined by the close formulations.

When demand and exchange rates are correlated, the optimal hedging is 

complex. On the other hand, for most of the cases, well designed call option 

currency contracts, as prescribed by our formulas, prove very effective in 

controlling total risk.

Our analysis clearly establishes the values of allocation option and 

financial hedging for risk averse firms. For the independent case with no 

financial hedging, the use o f an allocation option favors increased 

production, in an effort to improve expected profits and the objective value. 

Similarly, the use of a financial hedge, as intuitively expected, allows an 

increased capacity to improve expected profits and the objective value, 

through better control of profit variance, no matter using or no using an

iv
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allocation option, if the risk premium is positive. For the cases using 

financial hedge, using allocation option increases capacity, and improves 

expected profit and the objective value if ignoring the risk premium.

For a stochastic domestic market and a stochastic foreign market, the 

optimal hedge size vector is the unique, given a capacity and using a group 

of call option currency contracts at the prespecified exercise prices.

For the independent case with zero risk premium, among any 

combination of call options, put options and forward contracts, the optimal 

hedge consists of the two call option currency contracts, at one exercise 

price equal to t / p  and another equal to the per unit profit at the local 

market. However, there may exist multiple local optimal capacities. The 

financial hedging increases the capacity for the independent case in the 

presence of allocation option, and increases the capacity for the foreign 

market when no using allocation option, but the allocation option may 

decrease capacity even if the demands are known constants.

Furthermore, both the allocation option and the financial hedge may 

shifts the location of the production center from domestic to foreign or from 

foreign to domestic even for the independent cases.

In the revenue management essays, we are concerned with the problem of 

allocating inventory over a horizon to demand from several classes of 

customers when partial backlogging of unfulfilled demand is possible. The 

customers are distinguished into several classes by the price they are to pay 

for the item. The probability of customers’ commitment to wait is influenced 

by a discount the firm may offer as well as some class specific parameters.

In the first essay, demand from each customer class is modeled as a 

realization of a (non-stationary) random variable during each of several

V
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stages a period is divided into. The firm is able to view this demand in each 

stage prior to making an allocation decision on which demand to fill. 

Unfilled demand may then be delivered at the later stages or the beginning 

of the next period.

We present a solution approach to the problem of determining the 

inventory allocation, the customer discounts and the prioritization of demand 

for all stages (referred to as the ADP problem), through dynamic 

programming starting first with the final stage and then solving the problem 

by induction. We show that a class order policy is optimal with waiting 

customers being served subsequent to new demand in any stage. We 

describe how to find the inventory allocation in any stage for each class, 

with the use of class specific threshold limits. The class based threshold 

limits are monotonic in the waiting demand and the inventory remaining. 

We also discuss the optimal determination of dynamically offered discounts 

depending on the available inventory and realized demand for the stage. For 

the continuous time demand case, we provide an efficient and robust 

heuristic for the solution of the ADP problem in real time.

Our numerical results clearly indicate the advantageous shifting of the 

inventory-service frontier through the implementation of ADP policies. The 

ADP solution always increases the expected profit vis-a-vis the FCFS (First 

come / first serve) or no price discounting policies, often in the range of 15- 

20%. Through appropriate discounting that leads to significant customer 

retention and increases demand waiting rates of price sensitive customers, 

ADP policies reduce the base stock levels as well as the incurred holding 

costs in almost all cases while increasing the total fill rate (i.e. percentage of 

demand eventually satisfied) of all classes. ADP policies also improve the

vi
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prompt fill rates (i.e. percentage of demand immediately satisfied) of the 

most profitable and time sensitive customers.

In the second revenue management essay, we focus on the deterministic 

demand problem with constant arriving rates on the infinite horizon problem 

(a generalized “EOQ” model).

We propose an optimal rationing and discounting policy for the EOQ 

model. After introducing the concept of prompt service welfare, it is 

intuitive to find the optimal price discounts and the optimal rationing policy 

given the cycle time. Then, the optimal order policy is determined directly 

from the first order condition on the cycle time. The numerical analysis 

illustrates that both inventory rationing and price discounting can increase 

the average profit and the customer fill rates significantly by comparing the 

results to those from the no discounting policy and the naive FCFS policy.
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Chapter 1

On the Interaction of Production and Financial 

Hedging Decisions in Global Markets

i
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1.1 Introduction

1.1.1 Problem  M otivation

As firms locate activities of their supply chain all over the world, and products flow 

cross national boundaries, managers face the uncertainties and complexities of the global 

environment. Exchange rates and price uncertainties in production inputs are two of the 

complicating factors in the global supply chain environment. Exposure to exchange rates, 

in particular, affects the underlying economics of any firm dealing with foreign buyers, 

suppliers or competitors through its impact on input costs, sales prices and volume. Such 

currency fluctuations can be significant (fluctuations of 1% in a day, 20% in a year are 

not unheard of) with drastic impact on production and sourcing costs (see Hertzell and 

Casper (1988), Domier et al. (1998)).

Companies have employed different risk management approaches in coping with 

exchange rate and input price uncertainties. The typical way is to use financial markets, 

whenever possible, to hedge against such risks. Currency options are the most frequently 

used tools for hedging currency exposure (O’Brien (1996), Sundaram and Black (1995)). 

Options are financial instruments that allow a firm to buy the right, but not the obligation, 

to sell or buy currencies at set prices.) A sometimes overlooked option, but an effective 

one is for firms to use operational strategies as effective long term hedges against 

exchange rate and input price uncertainties. Operational hedging strategies, as clearly 

defined and illustrated in Cohen and Huchzermeier (1999), Cohen and Mallik (1997), and 

Kouvelis (1999), can be viewed as real compound options that are exercised in response 

to the demand, price and exchange rate contingencies faced by firms in a global supply 

chain context. Such real options include postponement of assembly and distribution 

logistics decisions, delaying final commitment of capacity and process technology 

investments, and/or switching production locations or sourcing partners contingent on 

demand and/or exchange rate scenarios. (We are going to restrict our attention to 

operational hedges with the real option to postpone the deployment of some of the firm 

resources in response to demand and exchange rate/price scenarios. For the interested

2
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reader in switching options, see work of Dixit and Pindyck (1994), Kogut and Kulatilaka 

(1994), Triantis et al. (1990) and Li and Kouvelis (1999)).

Even though substantial literature has been developed on both the financial hedging 

aspects (see Solnik (1991), O ’Brien (1996), and references therein) and the operational 

hedging practices of price and currency risks (Cohen and Mallik (1997), Kouvelis (1999), 

and references therein), very little effort has been spent in developing an all 

encompassing risk management approach that effectively integrates financial and 

operational hedges. This weakness of the literature is clearly pointed out, and outlined as 

a future research direction, in Cohen and Huchzermeier (1999), while the potential for its 

effectiveness is anecdotally exposed via examples in Domier et al. (1998, Chapter 9). Our 

research takes a few steps in addressing this gap in the literature. (For more detailed 

positioning of our research within the relevant literature, see Section 1.1.2: Literature 

Review).

We study the interactions of operational and financial hedging policies of risk averse 

global firms within a stylized, but representative, modeling setting. We consider a firm 

producing in its home country and selling to both the home and foreign markets. In a two 

stage decision framework, early capacity/production commitments and financial hedge 

are decided in the presence of demand and exchange rate (price) uncertainty at the first 

stage, while at a second stage, and after observing demand and price realizations, the firm 

exercises its production “allocation” option in supplying the foreign market demand (i.e., 

how many units to “localize” and distribute to the home and/or foreign markets). The 

emphasis of our analysis is on clearly establishing the value of the operational hedge 

(“allocation” option), and understanding how the presence of the financial hedge affects 

the capacities of the risk averse firm. Furthermore, interesting insights are obtained on the 

nature of optimal, or whenever possible perfect, financial hedges.

1.1.2 Literature Review

The literature on operational hedging practices of price and exchange rate uncertainty 

is rather recent, with the work of Huchzermeier and Cohen (1996) the most influential 

from a modeling perspective. They develop a stochastic dynamic programming

3
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formulation for the valuation of global supply chain network options with switching 

costs. A numerical evaluation scheme (a multinomial approximation of correlated 

exchange processes) is proposed for the valuation of a global supply chain network for a 

discrete set of alternative network options with costly switching between them. Their 

numerical results demonstrate the benefits of operational hedging practices via excess 

capacity and production switching options in environments of volatile exchange rates. 

The work of Kogut and Kulatilaka (1994), building upon earlier work of Dixit (1989) and 

Dixit and Pindyck (1994), is along the same direction with the emphasis on explicitly 

valuing the option of shifting production between two plants located in different countries 

as exchange rates fluctuate. Kouvelis, Anarloglou and Sinha (2001) study the effects of 

real exchange rates on the long term ownership strategies of production facilities of firms 

entering foreign markets, and illustrate the value of joint ventures as a “mothballing” 

option for such a context.

For sourcing environments with price uncertainties, some form of flexibility (i.e., in 

terms of the quantity and/or timing of purchase), and/or risk sharing features in the 

sourcing contract are often used (as documented in Carter and Vickery (1988), (1989), 

Domier et al. (1998) and Tsay et al. (1999)). Li and Kouvelis (1999) explicitly study 

flexible and risk-sharing supply contracts under price uncertainty. Their discussion 

clearly illustrates how operational flexibility, supplier selection, and risk sharing, when 

carefully exercised, can effectively reduce the sourcing cost in environments of price 

uncertainty. A minimum order quantity sourcing contract in the presence of exchange 

rate uncertainty is analyzed in Scheller-Wolf and Tayur (1997), with their numerical 

results illustrating how such contracts can reduce the variance of cash flows. For a 

thorough coverage of the vast global supply chain literature, the detailed positioning of 

the operational hedging research stream within it, and other work peripherally related to 

it, see Cohen and Mallik (1997) and Cohen and Huchzermeier (1999).

There is a vast literature on the use o f financial hedging instruments to better manage 

price and exchange rate uncertainties. One could start from the classical papers on option 

prices of Black and Scholes (1973) and Merton (1973), (1976), to more currency option 

specific papers of Garman and Kohlhagen (1983), Jorion (1988), Shastri and 

Wethyarivom (1987), Bodurtha and Cozertadon (1987), Bigger and Hull (1983) and

4
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Cornell and Reinganum (1991). This literature develops creative financial instruments 

and values them, in order to hedge uncertain magnitude cash flows, due to 

price/exchange rate uncertainties, but without consideration of how production decisions 

and operational hedging schemes, as developed in the global supply chain/operations 

literature, might be interacting with the magnitude and variance of such cash flows.

The international finance literature, in particular the research stream dealing with 

defining and measuring the different types of exchange rate exposure (see Hodder (1982), 

Flood and Lessard (1986)), clearly recognizes the need for a combination of financial and 

operational options in effectively managing operating exposure to exchange rate 

movements. However, beyond some intuitive and anecdotal level, discussions on the 

relationships between operational flexibility, financial hedging and exchange risk (see 

Lessard and Lightstone (1986), or a textbook level exposition at Shapiro (1988)), no 

structural models or quantitative tools are provided to aid the integrated operational- 

financial hedging decision making in uncertain price/exchange rate environments. Our 

research addresses this issue by clearly relating capacity/capacity choices to financial 

hedging strategies, and showing that for the risk averse firm the capacities it chooses are 

functions of both the financial hedging strategies it employs and the opportunity to 

exercise a real option (“allocation” option) contingent upon price and foreign market 

demand scenarios.

Some research papers apply the mean-variance analysis in the inventory problems. 

For example, Chen and Federgruen (2000) show that the risk-averse capacity is lower 

than the risk neutral solution in the news-vender model. On the other hand, Van Mieghem 

(2003) illustrates that the operational hedging may increase the capacity in the news- 

vender network. Different from our work, they do not consider the exchange rate 

uncertainty as well as the financial hedging policy.

The work of Mello, Parsons and Triantis (1995) is the one closest in spirit to our 

research. They present an integrated m odel o f  a multinational firm with flexibility in 

sourcing its production (i.e. a switching option in sourcing from different countries) and 

with the use of financial markets to hedge exchange rate risk. Agency costs generated by 

the firm’s capital structure create a link between the firm’s financial policy and its 

sourcing decisions under exchange rate uncertainty. The emphasis of the Mello et al.

5
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paper is on valuing dynamically the operating exposure to exchange rate movements via 

a state-contingent model in continuous time, with the model explicitly accounting for the 

strategic exercise of the switching option (sourcing flexibility) of the firm. Numerical 

results illustrate the interdependency of sourcing flexibility and hedging strategy. 

Chowdhry and Howe (1999) examines a setting in which there is also uncertainty 

regarding the production flexibility given a fixed total production capacity. They 

determine the hedging policy of foreign currency cash flow and the rationale of capacity 

allocation when the risk-premium of financial hedge is zero. Our research focus is very 

different, with an emphasis on understanding the production planning implications of the 

opportunity to both hedge operationally (via an “allocation” option) and financially (via 

currency option contracts). Our stylized model allows us to obtain closed form formulas 

for both capacities and currency contract parameters, and thus to quantify, and 

structurally understand the nature and factors affecting, the magnitude of the interaction 

of operational and financial hedging in an uncertain price and demand environment.

1.1.3 P aper O rganization

The structure of our paper is as follows: In Section 1.2, we provide our modeling 

framework of production and financial hedging decisions. In Section 1.3, we analyze the 

simultaneous production planning and financial hedging problem for a stochastic demand 

foreign market, and clearly explain the role of operational and financial hedging in such a 

context. Building on the intuition of these results, we proceed to analyze the same 

problem for a stochastic demand domestic market and a stochastic demand foreign 

market in Section 1.4. We also consider the two-market problem with a foreign 

production center as well as the impact of financial hedging and operational hedging on 

the production location in Section 1.5. We conclude with variants and extensions of our 

model, and a summary of our main insights, in Section 1.6.

6
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1.2 Model

We analyze the production and financial hedging decisions of a global firm producing 

in a single production facility and selling to two markets: market 1, its “domestic” market 

(defined for our purpose as the market trading in the “home country” currency, i.e., the 

currency the firm uses to report its consolidated financial statements), and market 2, a 

“foreign country” market with uncertain currency exchange rate. The production facility 

could be located in either of the two markets. We start our analysis from the perceived 

default case of the production facility located in the “home country”. We will explore the 

implications of the alternate location later.

We use a two-stage stochastic programming setting for modeling the firm’s decisions. 

In the first stage, a “capacity-production” plan for the production facility is developed, 

and appropriate financial hedging contracts on the foreign currency are purchased in the 

presence of uncertainty in market demands, exchange rate, or both. We will interpret the 

implementation of the optimal hedging later.

In the second stage, after observing the demand and exchange rate realization, the 

firm makes production “allocation” decisions (e.g., how many units to appropriately 

configure-“localize”-and distribute) in each market so as to optimize its profits. During 

the first stage, the firm invests in needed technology, equipment, and factory space, or 

modifies existing facilities, in anticipation of market needs. With the capacities in place, 

commitment of production resources as part of a first stage capacity may occur, 

frequently in an effort to provide quick response to foreign market demand by executing 

prior to demand realization long lead time production activities (such as acquisition of 

raw materials, production of complex components and subassemblies, or even non- 

market specific-“vanilla”-final products). At the second stage the products are configured 

to the market needs, and the necessary distribution and logistic costs for supplying the 

markets are incurred.

W e use the following notation:

.s': foreign market currency exchange rate; 

p t : the revenue per unit sold in market i ;

7
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r f: relevant localization costs for markets i per unit shipped (in home currency),

rx = p x -  Tj: incremental profit per unit sold in the second stage in market 1; 

r2 (5 ) = sp2 -  t 2 : incremental profit per unit sold in the second stage in market 2;

X  : capacity reserved in stage 1; 

c : unit capacity reservation cost in stage 1.

dt : random variables that represent the demand in market i,  i = 1,2;

<?(•): the density function of exchange rate distribution; 

g ( - ) : the density function of demand distribution;

/(•>•): the density function of joint distribution.

Given a capacity reservation X  in stage 1, the stage 2 incremental profit is:

where jc+ = max (jc,0) . As (1.1) suggests, when r2{s )>r l , we first allocate produced

units to meet demand in market 2, and the remaining units, if any, are localized for the 

needs of market 1. The priorities are reversed in the allocation process when 

r\ > r2 (■S) -  0 • For the case r2(.v) < 0 ,  we only localize the produced units for market 1 

needs.

Let h denote a generic financial hedging contract and Rh (s) denote the payoff of h 

in stage 2. Thus the firm’s profit at time T  (the end-of-period) is given as:

the risk-free interest rate in home currency. We assume throughout, unless otherwise 

explicitly noted, that the firm is risk-averse. Furthermore, we assume that

(a) the firm’s objective is to maximize the expected utility for time T  profit, and

rjwm (X  ~ d 2)+ , dy +r2( s ) m i n ( X , d 2) if r2(s )> r , 

7rop( X , s , d 1,d2) - ' r lm i n[ X, d l ) + r2(s)min  ( X - d 1)+,d2 if rx > r2 ( 5 )  > 0 (1.1)

r,mm

r.min if r2( s )< 0

7r(X,h , s ,dv d2) ^ [ - c X - H ( h ) ' ] e /r +7rop( X , s , d l ,d2) + Rh(s) .  (1.2)

where H{h)  is the cost of acquiring financial contract h incurred in stage 1, and y  is

8
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(b) the firm’s expected utility is represented by

U{7r)  = E[ 7 t ] - AV[ 7 t \

where £[•] and V [•] are the expected value and the variance of time T  payoff,

respectively, and A >  0 represents the rate at which the firm will substitute variance for 

expected value. It is well known (see Phillippatos and Gressis (1975), Jucker and Carlson 

(1976)) that the use of the mean-variance criterion is consistent with the principle of 

maximizing expected utility if

(i) the firm’s utility function can be represented by a quadratic function of time T  

payoff, or

(ii) the probability distribution of time T  payoff is a two parameter distribution (e.g. 

normal distribution).

In this paper we use assumption (i). Justification for the use of total risk measure (such as 

y [-]) instead of measures of systematic risk is provided in Hodder and Dincer (1986)

with the main argument being that managers are typically concerned about total risk. This 

can be attributed to a concern with the probability of financial distress, or bankruptcy, as 

well as to agency considerations (see Jensen and Meckling (1976), Markus (1982)). 

Therefore, the firm’s production and financial hedging problem is

mc a ^E ^ 7 r [ X , h , s , d l ,d2y \ - A V ^ 7 r [ X , h , s, d l,d2)~^ (1.3)

where £2 is a given feasible financial hedging set.

In pursuit of a solution to (1.3), we need to first understand how we can financially 

hedge a given capacity X  . For doing that, we need to first describe the type of financial 

contracts we are considering, and how these can be valued.

We are considering currency option contracts. We will do most of our analysis with 

call option currency contracts, but we will later comment on features of put option 

contracts if used instead. Let us consider a simple call option currency contract 

h = (Q,S) ,  where S is the exercise price of the call option, and Q is the contract size. 

The payoff of the call option in the second stage is

«,(*)=( *-sfe-

9
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Let C (S ) denote the price of per unit call option contract in the first stage, which can be

observed in the exchange rate market or some financial theory. For example, if the

currency exchange rate s(T) follows lognormal distribution, C (S ) can be determined by

using Black-Schole’s valuation (see Black and Schole (1973)). The risk premium of per 

unit call option contract is defined as

AC( S)  = eyrC ( S ) - E [ ( s - S y ]

In the profit expression of our model as in (1.1)-(1.3), we have included beyond the 

financial hedge related revenue terms, capacity acquisition costs in the first stage, and 

sales revenue and incremental variable costs (for localizing and distributing items) at the 

second stage. For some environments, it might be appropriate to incorporate shortage 

penalties, for when the foreign market demand is not met in full (e.g., goodwill loses with 

distribution channels and customers, potential implications for future sales etc.) and 

excess capacity costs associated with the unused capacity committed to the foreign 

market. (For detail motivation of such costs, see Silver, Pyke and Peterson (1998)).

Let v j and vp2 be the shortage penalty cost per unit of unmet domestic and foreign

market demand, respectively; and vs be the salvage value per unit of excess capacity at

the second stage (assumed vs < ce^ ).

Also, define rj = r, - vpl +vs , t 2 = t 2- v p2 + v ,, r,’ = px- t x and r2 = p 2s - 1 2.

Then our incremental profit at the second stage is now

10
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n op ( X , s , d l,d2) = <

rxmin ( X - d 2)+ ,dx + r2m in (X ,d 2)

mm (.X - d 2) \ d ,, ( x - d , - d 2y - v r, ^

Vp2 [d2-  min ( X , d2))

r^min ( X , dx) + r2min ĵ ( X  -  d l )+ , d2 J 

vs ( x  ~ dx - d i f  ~ vPi (di ~ min(X,  d^)) 

~vP2(d2 ~ min { X - di)+' d2 )

r^min ( X , dx) + vs ( X  — d l )+ 

~vPi{di - m i n ( X , dl ) ) - v p2d2

if r2 > r,

if ri >r2 > 0

if r2 < 0

Observe that

a op' {X, s ,dv d2) = 7lop I. , . . ( X , 5 , J 1 , J 2 )  + v s X - v  xdv- v  2d2
l * i - * 2 , r l - r2 ^

where 7rop , , , . is the profit function in (1.1) adjusted the parameter set as [Tl ,T2, rl , r2 ) .
I T j ,7*2 , , >2

Comparing with (1.1), we see that our second stage incremental profit has the “added 

component” of vsX  ~ v fildl - v p2d2. The costs from such added component can be easily

incorporated to the model, without affecting the methodological aspects and/or the 

qualitative aspects of our analysis. They do, however, complicate already complex 

formulas and proofs, without adding intuition and/or insights to the ones provided by our 

original model (as in (1.1)-(1.3)). Thus, in the rest of the paper, we focus on the problem 

without shortage penalty and salvage value unless explicitly addressed.

11
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1.3 Hedging the Currency Risk of a Stochastic Demand Foreign 

Market

1.3.1 Problem  Solution

We consider the problem with only one foreign market (i.e. dx = 0 )  in this section. 

The profit function in (1.1) is simplified as

^ { X , s , i i ) A r i { s ) mi n{X ' d ' ) i f r2 (s ) ‘ °[ 0 Otherwise

We omit the market index i = 2 from now until the end of this section since there is only 

one market. We use in this section the notational convention that all expectation 

operators, if not otherwise noted, are over the joint distribution of the exchange rate and 

demand random variables. Let S = (Sl,...,Sn) be a given exercise price vector of call

options, respectively. (The symbol ~ on the top of variables is a reminder that the 

variables in this expression are vectors). The appropriated revenue and price vector are

& 1  a n d C (5 ) = [ C ( 5 , ) , - ,C ( S , ) ]

Proposition 1.1. For a stochastic demand foreign market, given a capacity X  and using 

a group o f call option currency contracts at a prespecified exercise price vector S , the 

optimal hedge size vector Q ^ X , S ) is the unique solution to the linear equations

Cov ( s - S ) + , ( s ~ s ) + &  = - C o v [ n op( X , s , d ) , ( s - S ) ^ - \ L£sC(S)1\  / l A  (1.4) 

where Cov(x,  y) is the covariance matrix o f x  and y ,  x A is the transpose o f x , and 

A C (s )  = ( e 'TC ( S , ) - £ [ ( S- S , ) * ] ......^ C ( 5 J - E [ ( S- S , ) * ] )

and  ( s - S )  = ( ( s -5 ,) * , . . . , ( s -S „ )* ) .

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Proof: We obtain (1.4) from the first order condition on the hedge sizes. The full rank of

For a given demand distribution, it may be not difficult to choose reasonable exercise 

price vector to obtain optimal or efficient financial hedging policy.

Example 1.3.1. Assume that ln(.s) ~ N(ju,cr) , d = ( a - b s ) +, where fi,cr,a,b  are 

constants. Given a capacity X  , the number of units allocated to the foreign market is

If b = 0,  the hedge policy (s°,<2°) = (t/ p , - p m i n ( X , a ) )  results the zero profit

variance . Moreover, the hedging policy consisting of { r / p , Q ) , where Q are the solution

from (1.4), reduces most of the profit variance if b is small.

If b is large, we introduce a complex optimal hedge policy. Given a group of call 

option exercise price vector as S = (t/  p  ,t/  p  + p  + nA) , where A is a small

increment, we choose Qt = Y (  ) -  T (5 ,) , where i - 1, • • •, n and given Y  ( Sn+1) = 0 . It is

easy to verify that this hedge policy is close to a zero-variance hedge if A —>0 and 

nA —> oo.

If the option risk premium is small in the exchange rate market (see Bigger and Hull 

1983), i.e. AC^S) —>0, then the hedge policy almost does not effect the expected profit 

and the zero-variance hedge is optimal. ®

The single call option hedging in the following corollary is a natural choice for many 

practical problems, since we allocate the units to the foreign market only if s > r / p  at 

stage 2.

+
results the uniqueness of the solution.

mm

Otherwise

r>  0

13
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Corollary of Proposition 1.1. For a stochastic demand foreign market, given a capacity 

X  , the optimal hedge size fo r  a single call option with S - t /  p  is

PC ov[ r +m in (X ,d ) , r +] p 2&C(t /p)
C (X ' r / p , =  p r j  ^ j y j (1.5-a)

For the more general problem with shortage penalty and salvage value, the optimal 

hedge size fo r  S = t j  p  is

Q
r • \  

\  P j

pCov ( r )  mi n {X , d ) , [ r ) p 2isC{S) pCov

1 
1

+

a.
i 

i

V
l > ' ) 1

2AV l > T l V [ ( 0 * '

(1.5-b)

Proof: Similar to Proposition 1.1. ■

Comparing with (1.5-a) and (1.5-b), it is apparent that the optimal hedge size now has 

an added term, which is used to hedge “the added component” in the incremental second 

stage profit.

The strong results are presented for a stochastic demand foreign market with the 

demand and exchange rate being independent random variables, referred as the 

independent case.

Proposition 1.2. For a stochastic demand foreign market and a risk averse firm, with the 

demand and exchange rate being independent random variables, given S ° = T / p ,  the 

production-financial hedging decisions optimizing the mean-variance objective are a 

pair o f  unique value, denoted as ( x 0,j2 ° |s ° j, such that: X° is the solution to the 

equation

[ E ( r +) + AC(S0)]G °(X ) = c e ^ + 2 i£ :  ( r +)2 [ x  + G l { X ) - G l (0 ) ]g °  (X )  (1.6-a)

and

Q° = pGl ( x ° ) - p G l (0) -  p 2A C (S °)/2 /lV [r+] . (1.6-b)

14
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Proof: Given X  and a single call option Q = Q ( X , t / p )  and S = r / p ,  we need to 

calculate

d ( E [ n ( X , h , s , d ) ] - A V [ n ( X , h , s , d ) ] )

d x

Observe that for the independent case 

dQ( X, r / p )  r
a x  - - r h s ( d ¥ d -

d(E\7c{X,h,s,d)~\ \  r / X -i r-
1 1 \ x ------- ^  = [ £ ( r +) + A C (r/p )]-Jx g ( d > / J - c ^ .

Define A(X) = 7top( X , s , d ) - E [ 7 r op( X , S,d)]  + Q ^ ( s - T / p y - E ^ s - t/ p )* ) , we have

dV[n(X , h , s , d) \
dX

= 2E A( X)
d [ n op( X , s , d ) ]

dX
- 2 E A(X)

d E [ x op( X , s , d )]

dX

+ 2E A ( x y

J \
\

dX

Calculate these terms separately

MX)
d[7Z°P{ X , S , d ) \

dX

= j j x ( r + f e ( s )g ( d ) ds dd - E[min(X,d ) ] • [ e ( r + ) J  • j g(d)dd
X  0  X

p E [ m i n ( X  ,d)  ]-
p 2AC( T/ p )

2 A v [ r +~\

_P_ 
2 A '

( l l p ) v ( r ' ) ] g { d ) d d

{rt ) \ \ ( X - d ) g ( d ) d d - y t A C { T l p ) \ \ g ( d ) M

and

MX)
d E [ ^ op( X , s , d ) J

dX
E [ A{ X) ] -E[ r+n\ - \ g ( d ) - d d =  0

and

15
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A ( x y
q [ ( s - t ! p ) ' - E 1 

1 
Co 1 +

1 
1

)]]
d X

J
- j ; g (d ) d a l .£ [ A ( X ) .( r +- E [ r +])'

= \_~\x s i d ¥ d  -y [ r+]- 

- _ ^ M A i : g ( d y d d

E[min(X ,d)]~ E [ m i n ( X  ,d)~^ +
pA C (r/p) 
2Av[ r+]

2A

Plugging in the above three equations result

dV [x(X,h, s ,d)]  
dX

2 E ( r +)2l - \ { X - d ) g { d ) d d - \ g { d ) d d ,

The first order condition results

£ ( r +) + A C (r/p) + 2AE ( r +)
A

| ( X  - d ) g ( d ) d d  g[ d) - dd  -  ce1̂

A

Furthermore, observe that both - j [ X - d ) g [ d ) d d  and ^  g [d ) - d d  are decreasing
0

as X  increases, which are sufficient to prove unique optimality, since the right side of 

the above equation is decreasing in X  if it is positive and there exists one and only one 

solution can satisfy the first order condition. Thus, we obtain (1.6-a) and (1.6-b) follows 

from (1.5-a) directly ■

The term -  p 2k C ( t / p ) j 2 A V  [ r +] , called the hedge size deviation, is independent

with demand distribution and capacity. It is a trade-off between the mean and variance 

only dependent on the risk premium, which exists in the financial market even if the 

capacity and demand are zero. In the exchange rate market, the risk premium of call 

option is typically very small (see Bigger and Hull (1983)). The firm cannot make much 

extra money from selling a call option and the hedge size deviation is small if A is in a 

reasonable region.

16
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Example 1.3.2. Let the exchange rate follow a log normal distribution with 

ln (s) ~ iV (l,l) . The demand is independent with exchange rate and follows a normal

distribution £’(rf) = 100 and <r(<i) = 30. Let also ce77 -  2 , p  = 1, r  = 1.5 and 

A = 0.0002. Define the risk rate as AC(t/ p ) / C ( r / p ) . We present the results for the 

cases whether or not considering risk premium or financial hedge in the following table. ■

A C(t/ P) 
C(r/p)

(1 ) Ignore 

Risk Premium

(2)

Optimal Hedging (2) V '

-0.01 x \ u '
E*,AV*

87.6953,77.7115

79.2093,1.4978

87.3047,76.0625

77.6132,1.5507

-0.45,-2 .12

-2.02,3.53

0.00 x \ u '
E\AV*

87.6953,77.7115

79.2093,1.4978

87.6953,77.7115

79.2093,1.4978

0,0

0,0

0.01 X \ U *

E*,AV*

87.6953,77.7115

79.2093,1.4978

88.2813,79.6318

81.2546,1.6228

0.67,2.47

2.58,8.35

0.02 x \u *
E* ,AV*

87.6953,77.7115

79.2093,1.4978

88.6719,81.0464

82.9418,1.8954

1.11,4.29

4.71,26.55

Table 1.1. The Effect o f R isk Prem ium

Table 1.1 illustrates that the relative error of capacity and the absolute error of 

variance are very small. In the practical environments, if there exists the risk premium, it 

affects the profit no matter which kind of capacity we choose, the optimal one or the one 

ignore the risk premium. The real errors on expected profits and objective values are even 

smaller than the data in Table 1. This implies that the effect of risk premium is minor.

When the risk premium is zero, the financial hedging does not affect the expected 

profit and the optimal hedging policy is the one of minimizing the profit variance. Thus, 

we neglect risk premium and present the strong results in the following subsection.

1.3.2 Solution of the Problem  with Zero Risk Prem ium

17
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Assuming the risk premium is zero in this subsection, i.e. AC (5 ) = 0 , we can find the

optimal financial hedging policy among the combination of call options, put options and 

forward contracts.

Let hp = (<2P,S P) denote a simple put option currency contract. The payoff at stage 2 

is RhP (s ) = (S p -  s)+ Q p . Let hf  = [Qf ) denote a forward contract. The payoff at stage 2 

is Rhf (s) = ( s - E ( s ) ) Q f . (We use the superscript “ p  ” and “ / ” to identify the variables 

related to the put option and forward contract, respectively.)

Noting that, Rhf (5 ) is the same as the payoff of call option h = (Qf  ,0) as well as the

put option hp =(<2/ 5°°) at stage 2. These three hedging policies can be replicated with

each other and their effects on the profit mean and variance are the same. Thus, we treat 

these three financial contracts as equivalent in this paper. (We use “remarks” instead of 

“propositions” to identify the results under zero-risk-premium assumption and present the 

strong results for the independent case as follows.)

R em ark 1.1. For a stochastic demand foreign market, with zero risk premium and the 

demand and exchange rate being independent random variables, given a capacity X  and 

an exercise price S , the optimal size o f single call option is

Q ( X , S )  -  -E[min(X,d)] -Cov  r +, ( s - S ) +] y /v [ ( s - S ) +] , (1.7-a)

the optimal size o f  forward contract is

Qf { X)  = - E[mi n ( X ,d)]-Cov[r+ ,s~\/v[s],  (1.7-b)

and the optimal size o f  single put option is

Qp ( X , S )  = -E[min(X,d) \ -Cov  r+, ( S - s ) +] / v [ ( S - s ) +] . (1.7-c)

Given a capacity X , the optimal hedging policy among the combination o f call 

options and put options and forward contracts is a single call option

Q*(X)  = - E [ m i n ( X , d ) ]  = G1( X ) - G 1(()) and (1.7-d)

S * = r / p .  (1.7-e)

18
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Proof: Given X  and S , the optimal hedging sizes of call option and put option and 

forward contract can be obtained from first order condition on V^7r (X, h , s , d) j  similar 

to Proposition 1.1.

Let us consider a single put option contract (<2P(S P) ,S P) and compare it to the put 

option (Qp (°°),°°). Define the put option notation h p^ ={QP (5 ) , 5 ) .  It is easy to verify 

that

AV ’ ( S ’ , ° ° ) s V  x ( x , h p\sr ,s,d'l - V

= E

- r

x * ( X , s , d )  + R , ( i )
2 A

- E

r
E

V
7Zop( X , s , d )  + R  , ( 5 )

7iop{ X , s , d )  + R . ( 5 )

2 A

35

Define a hedging policy = (<2P( 5 ) ,5 ) ,  where Q P(S) = QP(S) /E[min  (X .d ) ]  is 

the optimal hedge size of the simplified problem with X  -  d  = 1. Then

2 SP
AVp (5 p,°°) = (E [m m (X ,rf)]) J -

r
3 E n op

V

35
dS

= ( £ [ m m ( X ,d ) ] ) 2 - | y ^ ( l , / i p|sp ,^ l )  - V ^ { l , h p\ ^ , s , l ]j

Similarly, define the notations h\s = (<2(5),S) and h | for the single call option, 

compare h\r/p and h\Q, and observe that

A V (T / p , 0 )  = v [ x ( x , h \ Tlp, s , d ) y v [ 7 r ( x , h \ 0 , s ,d)

= [ E [ m i n ( X , d )])2 -(v  ; r ( l , f t |^ , s , l )  - V ^ ( l , f c |o ,s ,l)

The hedge effect of policy h\ is equivalent to h p\ by verifyinglo 100

V  ^r(l,7i|o ,s ,l)  = V ^ 7 r ( l , h p\ ,s ,l)
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Observing V 7r[l,h ,5,1 = 0 ,  we obtain

v [ n [ x , h p\SP, s , d ) ^ - V ^ n [ x , h \ Tlp,s ,d)

= A V p ( s p , ° ° ) - A V ( T / p , 0 )  = ( E[mi n (X , d ) ] f  -V n { l , h p\sr , j , l )  > 0

and result the optimal hedging policy among the single call and put options.

The optimality can be generalized by the similar approach to the range among all 

combinations of call and put options and forward contracts. ^

Some managers may prefer to the forward hedging policy by the practical transaction 

cost. We provide the capacity applying forward hedging in the following corollary.

Corollary of Proposition 1.2. For a stochastic demand foreign market, with the zero risk 

premium and the demand and exchange rate being independent random variables, 

applying the forward hedging policy, the optimal capacity X f  is uniquely determined by

r 2 i x
' \ r +) - 2 A E  ( r +) \ [ { X - d ) g { d ) d d  

o

■2/1 l - ( C 0 v ( r +,5)yV[5]j V[s]E[min(X,d) \

(1.8 )

Proof: We need to calculate

d ( E [ n ( x , h f  , s , d ] \ - A v \ Ln { x , h f  ,s,</)])

d X

for Qf ( X )  = - a E \ m i n ( X , d ) \ , where a -  C0 v [ r +,s]/v '[ .s ], we have
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and

+ ( l - a 2 j-V [s,] <£ [w m (X ,< i)]-| g(d)dd
x

Plugging in the above equations result

d(E[z r ( X , h , s ,d ) ] -V[ z r ( X , h , s , d ) ] )

d x
C

+2A ( C o v ( r \ s ) /v [ s ] ) 2- l  ■V[s]-E[min{X,dj]
\

When t  is small, we have C ov(r+,s) is close to V[s] and the two considered 

capacities ( x f ,X °) are close to each other from (1.6a) and (1.8).

For the problem with zero risk premium and zero mean-variance ratio, i.e. A = 0 , we 

focus on find a capacity to maximize the expected profit and ignore the financial hedging. 

This problem is the traditional “risk-neutral” problem. (We use the subscript N  as a 

reminder that the variables in this expression are related to the risk-neutral problem).

R em ark  1.2. For a stochastic demand foreign market with zero risk premium, the 

optimal risk-neutral capacity X*N is non-zero (and unique) i f  Z? j^r+ J > c (and the joint

distribution f  ( s , d ) > 0  for  all s and d realizations) and solves

Otherwise, both the optimal production quantity and the optimal expected profit are zero.

f f rf(s,  d)dsdd  = ceyT
J X  J t/  p

(1.9-a)

For  the case o f  dem and and exchange rate being independent random variables, if  

J > c , then X*N is given by a newsboy-like formula

(1.9-b)

For the case o f  fixed demand, denoted as d  , we have
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X*N - d  i f  £ [ r+] > c e ^ , otherwise, X*N - 0 . (1.9-c)

Proof: Observe that the first order derivative of e [ti( X , h , s , d) j  is

F ( X )  -  - c e ^  + | x r f (s ,d)dsdd  , furthermore, F(0) = - ce17 + ^ [ r+]  •

For the case I i [ r +J < c ,  the optimal capacity X*N =0  since F ( X )  < 0 for any X  > 0 . 

For the case 2s[V+] > c ,  F ( X )  decreases in X  . If f ( s , d ) is strictly positive for the 

whole domain of its definition, then F ( X )  strictly decreases and the solution for 

F(X*n ) = 0 is unique. Otherwise the solution for F(X*N) = 0 may be a continuous 

interval. The formula for the independent case and fixed demand follow by simple 

algebra. ■

1.3.3 Role o f Production and  Financial Hedges

When a firm exploits the foreign market or the foreign production center, typically, 

the advantage is the higher selling price or the lower production cost and the 

disadvantage is the higher risk. In this paper, we try to use the operational hedge and 

financial hedge to reduce the risk (measured by the profit variance) and improve the 

expected profit. The operational and financial hedge opportunities are contingent on the 

exchange rate uncertainty. The hedging benefits will be vanished if the exchange rate is a 

constant.

We will first study the impact of an allocation option for a risk-averse firm. We will 

start with the case that no financial hedge is used. The mean-variance objective in this 

case is

E \ j t op( X , s , d ) \ - A v \ 7 i op( X , s , d ) \
L J (1.10) 

= - cXeyr + E  £r+min(X,  <i) J -  AV [ r +m m(X, d ) J

The first order derivative function of this mean-variance objective is
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F a h  ( x )  =  - c e *  +  J “ | J r +f ( s , d ) d d d s - 2 A X J "  ( r + ) 2 f ( s , d ) d d d s

+ 2AE^r+min(X ,d)~^^ J r+f ( s , d )ddds

(The subscripts A  and - A  are a reminder that the variables in this expression are related 

to the policy with operational hedging and without operational hedging, respectively. So 

are the subscripts H  and - H  for financial hedge).

The first order derivative function without an allocation option (and without a 

financial hedge) is

f_a -h ( x ) = ~ceYf + f~ f" rf(s,  d ) - d d - d s -  2AX  f" f  r2f ( s , d )  ■ dd ■ds’ JoJx JoJx 12)

+ 2A .E \rm in(X ,d)\-^ r f ( s ,d) -dd-ds

From (1.11) and (1.12), we can establish that

FÂ H{ X ) - F _ A'_H{ X)  = Fe{ X )  + 2AFv{ X )  (1.13)

where

FA x ) = C \ ~ M f i -s ' d ) d d d s

and

Fv ( X )  =  X r 2f ( s , d) ddds  +  E \ r +m in{X , < / ) ]  J ”  J “ r+f ( s , d )ddds  

- E[rmin(X,d)]  J  rf(s ,d)ddds

and | jc | is the absolute value of x .

The terms F ,(X ) and FV(X ) represent the impact of the allocation option on the 

expected profit and variance of the expected profit, respectively.

For the case with Fe ( X ) + 2AFV ( X ) > 0 , we can conclude that the optimal capacity

with an allocation option, X*A _H, is at least as large as that without an allocation plan,

X*_A _H, for a risk averse firm not using a financial hedge. Furthermore the allocation

option increases the expected profit and reduces the variance of it.

On the other hand, in some cases the allocation option might result in an increased 

profit variance. Then, we might obtain X*A _H < X*A_H . In such a case, the firm can
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increases the mean-variance objective value by using the capacity X*_A_ but

implementing it with an allocation option at the second stage.

We state below a stronger result for the independent case on the impact of the 

allocation option when there is no financial hedge used.

Proposition 1.3. For a stochastic demand foreign market with the demand and exchange 

rate being independent random variables, a risk averse firm  not hedging financially can 

increase the capacity, improve its expected profit and therefore improve upon its mean- 

variance objective, by implementing an allocation option.

Proof: The first order derivative of the mean-variance objective with an allocation option 

in this case is
r  r _ r   1 \

FA,-H( X )  = -c e /r +
E [ r +] - 2 A v [ r +]E[rmn(X,d)]

-2A E
\ x g { d ¥ d

(r+) J0 (*-<*)*(<*>«
—I /

Note that at the optimal capacity X*A _H, the function FA_H [ X )  + ceyT is equal to 

ceyT > 0 .  Since FA_H [ X)  + ceyT is the product of two decreasing functions in X  and

J g(d)dd  is positive, the optimal capacity satisfying the above condition is unique. 

Following the similar analysis, we can state that X*_A _ H is unique, and the corresponding

first order derivative function is

F - A . - H ( X )  =  - c e f , + } g ( d ) d d

E  ( r) -  2AV ( r) E  [min(X, d)]'
x

-2A E { r 2) \ ( X - d ) g ( d ) d d
0 >

Thus, the fact FA _ H (X ) > F_A _ H (X ) implies the results in Proposition 1.3.

The use of a financial hedge achieves its obvious intent to reduce the variance of 

profits given capacity, and consequently increase the mean-variance objective value. The 

discussion for the independent case follows.
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Proposition 1.4. For a stochastic demand foreign market with the demand and exchange 

rate being independent random variables, the use o f  an single call option hedging given 

exercise price S - r /  p  (or a forward hedging) increases the capacity, the expected profit 

and the objective value when the firm  using (or no using) an allocation option i f  the risk 

premium is positive.

Proof: For the independent case the firm uses an allocation option, we choose the 

financial hedge policy as a call option

Q ( X , r / p )  = - p E [m in ( X , d ) ] ■ - j * and S = r / p .

The first order derivative of the mean-variance objective leads to

£ ( r* )  + A C (r/p )

-2A E ( r *) Jo ( x ~ d ) s ( d ¥ d
f x s ( d ) d d

Using similar arguments in Proposition 1.3, the optimal capacity is unique. Furthermore, 

to assess the impact of the financial hedge, observe that

FAH( X ) - F A'_H( X )  = (AC(T/p)  + 2 A - v [ r +} E [ m i n ( X , d ) ] ) j ~ g ( d ) d d > 0

Thus, the financial hedge increases the optimal capacity, the expected profit and the 

objective value (through increased risk premium benefit and decreased variance of 

profits).

Similar observations can be made for the case when the firm no using an allocation 

option. We choose financial hedge of shorting a forward contract of size

| Q * - a . h  | ~ E  ( X »d )] and results

F- M ( x ) =  - “ 'I + [ £ ( r ) +  A c / - 2 -1 £ (' 'J )l_Jc ( x - d ) g ( d ) d d \ ) l ~ g ( d ) d d  

and F_ah ( X ) - F_A_H ( X ) = ACf  + 2 A V ( r ) E [min ( X ,d ) ] |g ( d ) - r f d > 0
X

where ACf  is the risk premium of forward contract.
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We state below a similar results for the zero risk premium case on the impact of the 

allocation option when the financial hedge is used.

R em ark 1.3. For a stochastic demand foreign market with zero risk premium and the 

demand and exchange rate being independent random variables, a risk averse firm  used 

financial hedging can increase capacity, improve its expected profit, and therefore 

improve upon its mean-variance objective, by implementing an allocation option. The 

risk-averse capacity is reduced from the risk neutral capacity.

Proof: Similar to Proposition 1.3. B

1.3.4 Num erical Analysis and M anagerial Insights

Based on the data setting in Example 3.2, we assume that the risk premium is zero 

and focus on the insight on the managerial aspect. We summarize the results under 

different hedging policies in the following table and figures.

No Allocation Option Allocation Option ( A , . ) - ( - A , ) / ( A , . ) ( % )

No Hedge U = 31.323, X =58.203 
E = 53.818,/IV = 22.496

U = 42.277, X =65.039 
E = 68.957, AV = 26.679

AU =34.97, AX =11.74 
AE = 28.13, AAV = 18.60

Financial

Hedge

U = 64.457, X =  84.961 
E  = 65.758,/IV = 1.301

U = 77.710, X =87.695 
£  = 79.209, AV = 1.499

AU =20.56, AX =3.22 
AE = 20.46, AAV = 15.21

(• ,« )- ( - ,-H) 
(-.-» )  
(%)

At/ =105.78, AX =45.97 
AE = 22.19, AAV = -94.2

AU =83.81, AX =34.83 
AE = 14.87, AAV = -94.4

( . )  
(.A,H)

AU =148.10, AX = 50.67 
AE = 47.18, AAV = -93.34

Table 1.2. a) The Effect of Allocation Option and Financial Hedging

As shown in Table 1.2. a), using the allocation option and/or the financial hedging, 

the capacity, expected profit and mean-variance objective are increased. Comparing the
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solutions with both hedging and those without any hedging, the increments are 

significant. The capacity increases more than 50%. The expected profit increases close to 

50% and the objective increases close to 150%.

T (±A,-H)
( - A - H )

(±A,H) 
( - A,H)

(~A,±H) 
(~A,-H)

(A,±H)
(A,-H)

(±A,±H)
( - A - H )

2 X* 0.6000 0.1267 1.1824 0.5368 1.4588

u' 1.8645 0.8942 2.3400 1.2087 5.3268

E* 1.6179 0.8915 0.7669 0.2766 2.3420
AV* 1.3529 0.7605 -0.9246 -0.9435 -0.8672

1.5 X* 0.1174 0.0322 0.4597 0.3483 0.5067

U" 0.3497 0.2056 1.0578 0.8381 1.4810
E* 0.2813 0.2046 0.2219 0.1487 0.4718
AV* 0.1860 0.1521 -0.9422 -0.9438 -0.9334

1.0 X* 0.0213 0.0085 0.2580 0.2422 0.2686

t r 0.0707 0.0453 0.6452 0.6061 0.7197
E* 0.0542 0.0451 0.0928 0.0834 0.1421
AV* 0.0233 0.0363 -0.9404 -0.9397 -0.9383

0.5 X* 0.0023 0.0000 0.1761 0.1733 0.1761

U* 0.0060 0.0040 0.4528 0.4499 0.4586
E* 0.0048 0.0039 0.0490 0.0480 0.0531
AV* 0.0020 0.0000 -0.9331 -0.9332 -0.9331

0.0 X* 0 0 0.1299 0.1299 0.1299

17* 0 0 0.3439 0.3439 0.3439
E* 0 0 0.0292 0.0292 0.0292
AV* 0 0 -0.9242 -0.9242 -0.9242

Table 1.2. b) The Com parison of Allocation O ption and  Financial Hedging

As shown in Table 1.2. b), the effect of allocation option and financial hedging 

decreases in the allocation cost. Using allocation option can improve the production plan 

expected profit efficiently if the per unit profit from the foreign market drops down to 

negative frequently. The financial hedging improves the performance through reducing
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profit variance. We will illustrate later in Figure 1.2 (a)__(d) that, both of allocation

option and financial hedging are insensitive to the demand fluctuation.

In Figure 1.1 (a)__(d), we increase standard deviation of exchange rate, i.e. £ r(lns),

from 1 to 2, while keeping E( s)  = e3 and adjusting //( in s )  accordingly. In Figure 1.1

(a), either the allocation option or financial hedging increases the optimal objective value. 

For the case with both hedging policies, the optimal objective value increases slightly in 

exchange rate variance, since the allocation option can save more value as the exchange 

rate variance increases. For the case only with financial hedging, the optimal objective 

value decreases slightly, since the effect from the remaindered variance is minor. On the 

other hand, for the cases without financial hedging, the optimal objectives decrease 

rapidly by the effect of exchange rate variance, no matter with or without the operational 

hedging. In Figure 1.1 (b), the financial hedging increases the capacity significantly, no 

matter with or without operational hedging. Capacities with financial hedging are much 

more stable than those without financial hedging, though all of they decrease in exchange 

rate variance. In Figure 1.1 (c), the impact on the expected profits from exchange rate is 

similar to those on the objective illustrated in Figure 1.1 (a). In Figure 1.4 (d), for the 

cases without financial hedging, the profit variances may decrease with the exchange rate 

variance since the capacities drop rapidly. For the cases with financial hedging, the profit 

variances increase slightly in exchange rate variance, since the financial hedging is 

efficient and capacity is stable.

In Figure 1.2 ( a )__(d), we vary the demand standard deviation. All mean-variance

objectives, expected profits and capacities decrease with the demand variance. For the 

case without financial hedging, the profit variance may decrease with the demand 

variance for the sake of the capacity.

In Figure 1.3 (a )  (d), the value of A mainly affects the objective without financial

hedge. A reasonable mean-variance ratio should correspond to a reasonable point on the 

mean-variance frontier. When A = 0 , we obtain the risk neutral solution is 

X*N =89.6484, U*N =E*N =79.2811 and X*Nt_A =86.9141, £ ^ = £ ^ , = 6 5 . 8 1 3 8 .

Figure 1.3 ( a ) ___(d) clearly illustrate that the solutions of using financial hedging are

close to the risk neutral solutions.
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Figure 1.1 (a) (d) Objective, Capacity, Expected Profit and Profit Variance

vs. Exchange Rate (Lognormal) Standard Deviation

Figure 1.2 (a) (d) Objective, Capacity, Expected Profit and Profit Variance

vs. Demand Standard Deviation

Figure 1.3 (a) (d) Objective, Capacity, Expected Profit and Profit Variance

vs. Mean-Variance Ratio

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

1.4 Hedging the Currency Risk of a Stochastic Demand Domestic 

Market and a Stochastic Demand Foreign Market

1.4.1 Problem  Solution

Similar to Propositions for one stochastic demand foreign market, we present the 

following propositions.

Proposition 1.5: For a stochastic demand domestic market and a stochastic demand 

foreign market, given a capacity X  and using a group o f call option currency contracts

at a prespecified exercise price vector S , the optimal hedge size vector q ( x , s )  is the 

unique solution to the linear equations

Cov ( s - S ) \ ( s - S ) * Q = -C ov 7top (X ,M 1,d2) , ( s - s )+l-[ACGS)]A/ H U M )

Proof: Similar to Proposition 1.1. ■

For a given demand distribution, it may be not difficult to choose reasonable exercise 

price vector to obtain optimal or efficient financial hedging policy.

Example 1.4.1. Based on Example 1.3.1, add the assumption dx = d . If b = 0 , there is a 

zero-variance hedge policy consisting of two call options 

i Si’Qi) = {T2 / P 2 ’- p 2min{X  - d,a))  

and = ( ( ri +T2 ) /  P2 ’~P2 [ m i n ( X , a ) - m i n ( X - d , a ) t y .

Moreover, the hedging policy consisting of (t2/ p 2,Qt ) and ((r, + r 2) / p2,Q2 ĵ reduces

most profit variance if b is small, where Ql and Q2 are the solution from (1.14).

If b is large, we introduce a complex optimal hedge policy. Given a group of call 

option exercise price vector as S = ( t2/ p 2,T2/ p 2+A,---,r2/ p 2+ n A ) , where A is a given
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small increment, we choose <2, = y 2(5 i_1) - F 2(S,.), where Y2 (.v) is the number of units

allocated to market 2 when the observed exchange rate is 5. It is easy to verify that this 

hedge policy is close to a zero-variance hedge if A —» 0 and An —> ° ° . ■

We begin to allocate the units to the foreign market only if s > t2/  p 2 at stage 2. The 

prior market becomes foreign and there are more units allocated to the foreign market if 

s > ( p l - T l + T 2 ) / p 2 . Thus, we introduce a hedging policy consisting of two call options, 

which is a natural choice for many practical problems.

Corollary of Proposition 1.5. For the risk averse firm  with a domestic production center 

and stochastic demands fo r  both markets, given a capacity X  and using two call option 

currency contracts at the prespecified exercise prices Sl - T 2/ p 2 and

S2 = ( Pi -  Tx + t2 ) / p 2, the optimal hedge sizes are uniquely determined as

Q ^ X ^ S J

-C ov \^nop, (5 -  52)+ J • Cov ĵ ( 5 -  5 ,)+, (5 -  52)+ J (1.15-a)

+(1/2/1) (AC(5j)V [(5 ̂-  S2)+ ] -  AC(S2)Cov[(5 -  Sl )+, ( s -  S2)+ ])

and

( 5 - S 1)+] - y [ ( 5 - 5 2)+] - ( c o v [ ( 5 - S 1)+, ( 5 - 5 2)+])

e 2(X ,5 p 52)

( s - S 2)+]

- C ov[ ^ p, ( s - 5 1)+]-Cov[ ( s - S 1)+,( j - S 2)'

+ (1/21) (AC(5, )V [ ( .v -  52)+]  -  AC(S2)Cov [(* -  5 ,)+ , ( s -  S2)+ ])

(1.15-b)

v [ ( j - S 1)+] - v [ ( j - S 2)+] - ( cov[ ( * - 5 1)+,(S- S 2)+])

For the case o f  demand independent with exchange rate, the optimal hedging sizes 

are
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and

Ql ( X , S l,S2) = - p 2E^min [ X - d ^ f  ,d2 )

•AC(S2)Cov

2/1 ’( s - S j +} v [ ( s - S 2)+] - ( a n { ( s - S j \ ( s - S 2)
2\

Q2{ X , S 1,S2) = - p 2E^mi n[X , d2]~min^[X  -< i,)+ ,d 2

AC(S2)V [ ( 5  -  Sj)+ ] -  AC(5j )Cov [ ( 5 -  St )+, (s -  S2)+

(1.15-c)

(1.15-d)

Proof: Solve (1.15a-d) by the Cramer rule. g

1.4.2 Problem  Solution with Zero Risk Prem ium

The strong results for the problem with demand independent to exchange rate are 

presented in the following remarks.

R em ark 1.4. For the risk averse firm  with stochastic demands in the domestic and 

foreign markets, i f  the risk premium is zero and the demand is independent with exchange 

rate, then there exists an optimal hedge fo r  a given capacity X  among any combination 

o f call options, put options and forward contracts, consisting o f the following two call 

option currency contracts

K = ( ( £ , S i ) :  Q l ( X )  = - p 2E([m i n [ ( X - d l )+,d2^ , S ; = T 2/ p 2 ,and  (1.16-a)

K = ( Q l X ) :  Q ; { X ) ^ - p 2E[ mi n[ X, d2] - m i n [ { X - d iy  ,d 2 j, (1.16-b) 

$2 = { P l ~ Tl +T2 ) / P2
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Proof: Divide the domain of exchange rate into three sub-ranges, C, G [0 ,5,*), 

C2 G ^ ’*,5’*) and C3 g [5*,°°). For the problem conditional on j g C (, let R*hi (5 ) denote 

the optimal hedging policy, we have

1=1

where Vl (•) are the expectation value and variance function conditional on s e  Cr

For the problem conditional on s e  Ct , the revenue from production market at stage 2 

can be rewritten as a linear function of s , n°p - q n( X , d l ,d2) + ql2( X , d l ,d2) s . Since the 

allocation policy is independent with s e  C(, the hedging problem condition on each C, 

reduces to similar to the one only with foreign market. Similar to the approach used in 

Remark 1.1, the hedge policy minimizing Vt \[n pp + J is

K  = ( $ ' S ; ) :  Qj = - E l [ql2\ and 5,* = in f(C ,) , 

where inf (•) is the infimum function.

It is easy to verify that the hedging policy (f\,h*2) given in Remark 1.4 has the same 

hedging effect as each h* conditional on s e C1 and it is easy to verify that 

E, \ n op +R*h] = E \ n op +7?*]. Thus, we have

v ( x *  +Rl)  = t [ p ( s e  C,)-V, («"' + « ; ) ]  = 2 [ p ( s e  C,)-V, (<<■+«;)]
(=1 1=1

and the policy is optimal. g

Remark 1.5. For the risk averse firm  with stochastic domestic and foreign demands, and 

zero risk premium, and the demand independent with exchange rate, we have

a). Using allocation option, the expected profit function is concave.

b). Using allocation option and financial hedging, the profit variance increases in 

capacity X  and X*AH < X  *N i f  the following condition holds

dv\V p]  . .
— —-  = 2C ov{o,nop) > 0 (1.17)
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where o ( X , s , d l ,d2) =
*2(^) ^2 (-^) 

rt (s ,dv d2) e  D ^ X ) ,
0 (s ,d p d2)e  D0(Z )

and D2 (X ) = {(r2 > rv X  < d2)u ( r j  > r2 > 0 ,d , < X  < d, + d 2)J,

and Dj (X ) = {(?i > r2, X  < d , ) u ( r 2 > rp d2 < X  < dx + d2)],

and D0(X )= { (r2 > 0 ,X > d 1+ d 2) u ( r 2 < 0 ,X > d 1)},

whose are the domains o f  exchange rate and demand realization when the marginal unit 

allocates to the foreign market, domestic market and no market, respectively.

Proof, a). The operational hedging allocates the marginal unit to the available location 

with highest marginal profit. Thus, the marginal expected profit decreases with capacity 

and the concavity holds.

b). Observe from the proof in Remark 1.4

dVl [ r f p( X , s , d 1,d2) + Rh. ( s )d v [ z r op( X , s , d l , d 2) + Rh. ( s )]

dX = 1(=i
P i s e q ) -

dX

Define 4̂, ( X ) = qn + ql2s -  E  [ql2] (s -  S *) , we have

2dX 11 H dX ~ Ei[ A ]

-El - E ,

d £ /[4 ]
dx

E Wn]
d A i

dx
+ Sl £[<7;2]

dE,[ A ]
dx

r -.d-E.fAl r , . .dE,  fA l * r 1dE, [A]
- E l [qn +ql2s ] ^ ^  + El [ql2}El { s ) - ^ - - S l E[ql2]- ' L̂ J

= E, (4 n + 4 /2 ^ )^ -

dX

- E , ^  [4/2 ]
aAt 
dX

dX

- E , [ q n]

dX

9 g |[A ]
dx

In each sub-area C, , let (Dn ( X ) , D l2( X ) , D l0(X)' j  denote the corresponding domains of 

demand, in which the marginal unit is allocated to the foreign, domestic and no market,
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respectively. Using the optimal financial policy Qj -  - E t [qn \ and S* = inf (C ,) given in 

Remark 1.4. We have

! ^ p .  = o , - p 2P ( D l2) ( s - S ; )

where o, =
r2 ( , d.2 ) G Du ( X )
r, (dv d2)G Dn ( X )  is the marginal allocation function for C, . 
0 ( i 1, J , ) e D „ ( X )

and 2'dX  '

and

o, [ < - £ ( < ) ]

—p.:P — St — Et ( (/n )]]+^9i2 ~Ej (‘/j2 )3''' )^

= E, ( « , [ < - £ ( < ) ] )  = Cov (o„ x ? )

= X  [ p  (■515 c <):2Cot (■"i-< " ) ] = 2Cov ( ■ )a x

Thus, the result in b) follows if the condition in (1.17) holds.

In many practical environments of using the allocation option and financial hedging, 

the marginal profit variance increases with an accelerating speed while the marginal 

expected profit is positive. Then, the optimal solution can be easily obtained from the 

first order condition.

Exam ple 1.4.2: Based on the data setting in Example 1.3.2, we add the domestic market: 

dl ~ /V (100,30) and independent with d2 and s . Choose a larger A = 0.002 to emphasis 

the impact of profit variance and the results are shown in Figure 1.4. ■

However, there exist some special counter examples even for the independent case.

Exam ple 1.4.3. Assume that = 3, r, = r 2 = 0 , ^ = 1 0 ,  p2 = 1, In(5 ) ~ N (1.5,0.5) 

and the risk premium is zero and A = 0.005. The demand is a two stage distribution

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

dependent on a location factor 6 : ^dv d2) ~ (100^,200( l - ^ ) )  and

P ( S  = 0) = P ( S  = 1) = 0.5.

As shown in Figure 1.5, there exist multiple local solutions by the compensation 

effect between the two markets. The condition in (1.17) fails and the monotone of profit 

variance is broken. Note that the marginal variance increases again when the capacity is 

very large by the risk effect from the exchange rate uncertainty. ■
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Figure 1.4 1.5 Objective, Expected Profit and Profit Variance

vs. Capacity

On the other hand, the optimal capacity for the risk neutral problem is provided in the 

following remark.

R em ark 1.6. For the risk neutral firm  with stochastic domestic and foreign demands and 

zero risk premium, the optimal risk-neutral capacity is unique i f  the density function is 

positive on the whole domain.

I f  the demand and exchange rate being independent random variables, X*N solves 

£'[max(r1,r2) ] - P ( J 1, J 2e DNl) +r{ -P(d t ,d2e  DN2)

+ E [r2+ ]  • P (d, , d2 G Dm ) + E [min ( rx, r2+)] • P (dl , d2 e  Dm )

i

-  ce yr (1.18-a)
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X N =

where Dm = {X < dx, X  < d2) , DN2= { X  < d x, X  > d 2) , Dm  = {X > d v X  < d 2) and 

DNi - { X  > d x, X  > d2, X  < dx +d2].

For the deterministic demand problem, the risk neutral capacity is 

0 i f  £ '[m ax(r1,r2) J < c e ,T

i f  E [m ax(r1,r2)]>c<??/7\ £ '[ r 2+J ^ c e 1̂ ,d t < d 2, or 

i f  rx >cen  ,E' \rmn(rv r f ' j ^<ce fT ,d^ > d 2 

i f  £ '[m ax(r1,r2)] > c e ^ ,r j , d2 <dv  or

i f  E ^ r f ^ > c e ^ , E \ j r i m ( r y, r f } ^ < c e YT,d2 > d x 

dx+d2 i f  E^mm{r v r f ^ > c e y

(1.18-b)

Proof.

dE(7l}jdX = -ce~yT

+  j j  max(r, ,r2)f (^s,dl ,d2 )dsdd + J  r j  [s,dx,d2)dsdd
Z>jvi w[0,»=>) Z)W2U®'00)

+  J J  r2 f [ s ,  dx,d2)dsdd+ J J  min {rx,r2  ̂f  [s,dv  d2)dsdd
Dn 3u [0 ,~ )  DN4u [0 ,~ )

Since the area with higher profit rate shrinks as X  increasing, dE(?r)/dX decreases and 

X*N is unique if f ( s , d )  > 0 on the whole domain. The results for the cases of 

independent demand and fixed demand follow directly through some algebra. ■

For the risk averse problem with deterministic demands and zero risk premium, the 

financial hedge policy reduces the profit variance to zero and the unique risk neutral 

solution is optimal.

1.4.3 Role of the Production and Financial Hedges

1.4.3.1 Impact of Production Allocation
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The allocation option increases the expected profit as well as the mean-variance 

objective in most of practical cases. However, it does not always increase the optimal 

capacity.

We can illustrate the effect of allocation option on the capacity by considering the 

risk neutral problem. Given a pair of deterministic demands the production

decision is separated into two single market problems if no using allocation option. 

Similar to (1.9-c) in Remark 1.2, the optimal capacity for each market is determined by 

the marginal expected profit at the single market as

, _  fd, rt i c e "  .  _ l d 2 E ^ c e "
A 1 , N , - A - 1  „  . a n a  A 2 , N , - A  1  „  ,  f l . 1 V  d )

[ 0 otherwise [ 0 otherwise

Let X N_A = X XN_A + X 2N_A denote the total capacity. For the case with 

£ '^m in(r1,r2+ < c e ^  < m in [r,,£ '(r2) ] , comparing with (1.18-b) and (1.19-a), we have 

X* = m ax [d 1,d 2] < d 1 + d2 = X*N_A.

On the other hand, for the case with E  [max ( rx, r2) J > ceyT > max [r ,, E  ( r2) J , we have

X*N =m in[rfp J 2]> 0  = X*N

In the other cases, the allocation does not change the optimal risk neutral capacity.

The optimal risk neutral objective of no using allocation option is

E [ ^ _ A( X l _ A, s ,dv d2)] = (rx- ce* )+ dx + [ s ( r 2 ) - c e yr J  d2 (1.19-b)

The optimal risk neutral objective of using allocation option is

E\n°* ( X *, 5, dx, d2)] = (E  [max (rx, r2)] -  ce* ) min (dx, d2)

+ {rx- c e vr)* (dx- d 2)+ + [ £ ( r 2+) - c e ^ ]  (d2- d x)+ (1.19-c)

+ |is [m in (rp r2+ j [(d , + d2)-max(<ip<i2)[|

The incremental objective value is
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in (d p d2) (1.19-d)
(£ '[m ax(/'1,r2) ] - c e rr j + |is£m in(r1,r2+ )

- ( r , - c ^ ) +- [ £ ( r 2 ) - c ^ ]

+ ( [ £ ( r2+) - c^ ] + ~ [ E ( r2 ) - cefrj)(<*2 ~ d x)+

It is easy to verify that A N<±A > 0  by considering each case of whether

(jE’[m ax(r1,r2) ] - c e >'r ) , {rl - c e yT^ , ) ~ c e yT J and |£ ^ m in (r1,r2+) J - c e ,'T j are

positive.

Since the revenue is increased by using allocation option for all observation at stage 

2, the allocation hedging always increases the expected profit for the stochastic demand 

problems.

These arguments can be adopted for the risk-averse problems either with financial 

hedging or without financial hedging when the mean-variance ratio is small.

The allocation option increases capacity and decreases profit variance in many 

practical problems. However, different from the one foreign market problem, the capacity 

may be brought down and the profit variance may also be increased by the allocation 

option in some special environments.

Exam ple 1.4.4. Assume that ce/r = 1, t x= t 2 - 0 ,  p l = e15, p 2 =  1 and the risk premium

is zero. Given a joint uniform demand distribution: d 2 e  [0,100] and d l = 1 0 0 -d 2.

Assuming ln (s) ~ N ( n , a )  and ,4 = 0.02, we increase ere (0.15,0.6) and adjust fj,

accordingly to keep E ( s ) = e15. Then, we compare the capacities in Figure 1.6 (a). The

risk averse capacity no using allocation option is higher than the risk neutral solution, 

since there is a natural operational hedging effect by the demand compensation when the 

capacities in both markets are increasing. The allocation option can satisfy the market 

compensation and bring down the capacity in this example. After financial hedging, the 

capacity of using allocation option is more close to the risk neutral solution. In Figure 1.6 

(b), the allocation option may increases the variance for the cases no using financial
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hedging, since it improves and the marginal expected profit and increases the expected 

number of units allocated to the foreign market. The allocation option may also reduce 

the capacity and increase the variance for the cases using financial hedging as illustrated 

in Figure (1.6) (c) and (d). ■

200

£  150
• H

« 100 acdO 50

0
0.15 0.25 0.35 0.45 0.55

Exchange Rate Standard D erv ia t io n

(A, H) or (A, R isk  N eu tra l)

( - A . - H )

® 250 o
£ 200 

& 150 
^  100 

so

0. 15 0.25 0.35 0.45 0.55
Exchange Rate Standard D e r v ia t io n

(A, -H) ( - A ,  -H )

200  -

£  150 “.................................................

£ 1 0 0 -----------------------------------a.
a)
O 50 -

0  1--------1--------1---------1---------1
0. 15 0.25 0.35 0.45 0.55

Exchange Rate Standard D erv ia t io n

 (A, H) or  (A, R isk  N eu tra l)

 (—A, H)

150

120

90

60

30

0
0. 15 0.25 0.35 0 .45 0.55

E x ch a n g e  R a te  S t a n d a r d  D e r v i a t i o n

(A, H)   (-A , H)

Figure 1.6 Allocation Option Effect in Two Market Problem

a) and d) Capacity; b) and c) Profit Variance vs. Exchange Rate Standard Derivation

1.4.3.2 Impact o f Financial Hedging

The use of a financial hedge achieves its obvious intent to reduce the profit variance 

given capacity, and consequently increase the mean-variance objective value. For the 

case with zero risk premium, the financial hedging does not affect the expected profit, we 

focus on the hedging effect on the variance. The following strong results report the
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impact on the capacities for the independent cases either using or no using an allocation 

option.

R em ark 1.7. For the risk averse firm  with stochastic domestic and foreign demands, and 

zero risk premium, and the demand independent with exchange rate, and using o f  

allocation, the use o f  (optimal) financial hedge increases the capacity.

Proof: Observe from the proof in Remark 1.5

d v U o p ]  a v | V p + R , l  3

2dX 2dX v "i=\

3 V , [ < ]  3 V , [ <  + RV_

2dX 2dX

j

= Z
1=1

P ( s e q )
-E , RH- d x

dRh.

dX

. . dE. (T t'f + R . ) dE, (R .)
■ * .  — h i + e , u r  ) - ^ j d
l \ Ik) dx n  1 ’ dx

Observing =qn +ql2s , Rh- = - E [ q n ] ( s - S * ) ,  

we have the argument similar to Proposition 1.4

dn\
dX

op

~ = ’
dR.__ fk_
dx P2R { ^ n ) { s * /̂)»

d v [ x op] d v [ n °p +Rh. ]
2dX 2dX

= -E,
( - E r q ^ - S ^ O ' - p . P i D ^ s - S ; ) ) '

+{q,i+qi2s )( -P2p {Dn ) ( s - s J))

+ El { - E l [ql2] ( s - S ; ) ) E l (ol - p 2P{DI2) ( s - S ; ) )  

~ E t (qn + qns )P2P { ^ 1 2 ) Et [s — Sl j
/

r\ (s ~ S j )
\

E>n
/

r,E,(S - S ; )
\

Dn

Ei k 2] Et « r2( s - S ' ) E 12 - E , • r2Er — J D 12

\
0 tyo

V
0 *>,0)

^P 2 P {Di 2 )E[^(qn + ql2s)[s Et (qn + ql2s ) p 2P( Dl2) E( ̂ s 5, )

- p !P (D ,2) £ , [ f c ] £ [ ( S- S ; ) 2] + p !P (D ,; )£ ,[« ,2] [ £ ( S- S ; ) ] 2

= p ^ k 2 ] v , ( * ) a o
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R em ark 1.8. For the risk averse firm  with stochastic domestic and foreign demands, and 

zero risk premium, and the demand independent with exchange rate, and no using o f  

allocation, then,

a) the forward contract with size Q[*a (X ) = - p 2E(mir \ [X2_A,d2~̂  is the optimal

financial hedging fo r  a given capacity vector (X, _A, X 2 among any combination o f

call options, put options and forward contract;

b) the use o f financial hedge increases the capacity at foreign market, i.e. X 2_A.

Proof: a). Rewrite the revenue from production market at stage 2

n % (x i.-A»X 2 . -a , s ,dl , d 2) = rl m in ( X , _A, d l ) + r2 m in( X 2_A, d 2) 

as a linear function of s ,

ft-A = cI\,-a ( X \,-a -> X 2 .-A’d \ , d f )  + q 2_A( X x _A, X 2 _A, d l , d 2) s .

Since the allocation policy is independent with s , the hedging problem is simplified 

similar to the one foreign market case. Applying the approach used in Remark 1.1 and 

Remark 1.4, the hedge policy minimizing V \jt°fA + RhA  ]  is a forward contract

h'-A = hi; ( o ' ; ): a ' l  ( x  ) = - E ( * . . , )  = - p 2C [min ( X 2. „ d 2) ] .

b). Similar to the proof in Remark 1.5

2dX;i , -A 2dX i - A

dR.
op h[AR — —  + 71' ,

** dX,_A ~A dX,_A

+E
3 El U f A^ R h r ) ,

^ ---------—  + E. (^r°0 ,  -*-1
\ dx,_A -A) dX;_A

> 0 .

dn°‘

L i - A

Observing n°fA = qu_A + q2_As , R ^  = - £ [ ^ 2>_il] [ s - E ( s ) ] ,  ^ =4- = jo  x ~ \ > d '

dR dR
— = 0 and ——^ -  = - p 2P [ X 2 _ A < d2)[,s-.E (,s)] , we have the argument similar to

dx,L l,-A

Remark 1.7

d x 2 , - A
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w \ > c ] a y ”- * +Rhi:
2dXh_

= - E - £ [9 2 .^ ] [5 - £ ( j )]

+ E ( - E [ q 2'_AJ S - E { s ) ] ) E

^  X,_A < d ^

JJ0 X x_A > d y

T\  ^ 1  - A  ^  ^ 1

0 X h_A >d,

=  0

d v [ n * ]  W x°-PA+Rhr:]
2dX 2  - A 2dX 2 - A

= - E
- £ [ 9 2, J s - £ ( s)]

+  (?1  ,-A  +  < h , - A s ) ( - P l P ( X l,-A < d 2) [ s - E ( 5 ) ] ) /

+ £ ( - £ [ « 2 . - . ] [ * - £ W ] ) £ |  ]□  Xx " A l dl - p A x ^ < d2 ) b - E (s )\

\

~  E  { < h , - A  +  < h , - A S ) P 2 P  ( X 2  , - A  <  d 2  )  E  "  E  ( S  ) ]

r2 ( 5  —£ '(5')) X 2_A < d ,
= E [ q 2,.A] E

f

*

V
0

- E ( s - E ( s ) ) E
r 2  X 2 - A  <  d 2

0  x 2,_A> a 2

- p 2P (X 2,_A< J 2) £ [ ^ _ A] £ [ ( 5 - £ ( . ) ) 2]

+ /72P ( X 2_A< a 2) £ ( ( ^ _ A+ ^ 2_A5 ) [ s - £ ( ^ ) ] )

+ p 2P(X2' _A<d2) E [ q 2'_A] E [ S- E ( s ) ] E [ s - E ( s ) ]

- P 2 P ( X 2 , - A < d 2 ) E [ ( q h_A + q 2^ As ) ] E [ s - E ( s ) ]

= p 2P ( X 2,_A<d2) E [ q 2'_A] v { s )

>0

Given a pair of capacity (x j  _A, X2 _A) with X2 < X*2_A_H , we have
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U.A ( X , , X - U.A ( Xh.A, X 2i.A)

— ) ~ U - A  . - H  (  X j _ A  - I t  • X  2 , - A - U  ) J

- [ M x . ' , x ^ A ) -u -A ,.„  ( x , ^ , x 2_A)]

* ( y ,.-«(•x U - »  • * u - » ) ■- M x : u - »  ■ k - a . - h  )]

y . a . - «  ( X,'.-, ,  ) ■- V „ ( X[_A, X x_A)]

' W - A . - » ( X l * . - » ’ X 2 . - * )  W - a ( K - A . - H ' X  1 - a )J 2dx
\A 2 , - A

K - a , - h

+

2 - A 2dX 2  , - A

(IX2 - A

J
M  , - A

W-A.-H (X, . -A,X2,.a ) 3V_, ( X , ^ , X ^ a)
2dX2  ,-A 2dX 2 - A

dXh_A

>0

This implies that (x j  _A, X 2 _A) is not the solution and result in b) holds.

For the problem of no using allocation option, we illustrate some interesting 

managerial insights through the following example.

Exam ple 1.4.5. Based on the data setting in Example 1.4.4, we increase ere (0.15,0.6)

compare the capacities related to financial hedging in Figure 1.7 (a). The risk averse 

capacity either using or no using financial hedging may be higher than the risk neutral 

capacity for the sake of the demand compensation. Furthermore, the financial hedging 

pushes the capacities far away from the risk neutral solution. There exist multiple local 

optimal plans for no hedging case and potentially for the hedging case as shown in Figure 

1.7 (c). (given <r = 0.3). ®
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Figure 1.7 (a). Capacity vs. Exchange Rate Standard Derivation,

(b). Objective vs. Capacity
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1.4.3.3 Comparison of Production Allocation and Financial Hedging

Based on the data setting in Example 1.4.2, we summarize the results under different 

hedging policies in the following tables.

T
(-A.-ff)

(±a ,h ) 
( - A,H)

(■~A,±H) 
(- A - H )

(A,±H)
(A- H)

(±A,±H)
(-A.-H)

2 X *
1/’ 
E' 

AV*

-0.1119
1.2707
1.6199

5.0009

-0.2620
1.2732
1.3286

8.0126

0.3315
0.2542
0.1462

-0.8993

0.1065
0.2556
0.0188

-0.8488

-0.0173
1.8510
1.6690

-0.0927

1.5 X*

u*
E ' 
AV*

-0.2272

0.8767
0.9481
1.2532

-0.2823
0.7552
0.7984
5.0531

0.1861
0.3423
0.0989
-0.9418

0.1016
0.2554
0.0144
-0.8437

-0.1487

1.3561
0.9762
-0.6477

1.0 X*
u"
E' 

AV*

-0.2662
0.5487
0.5628

0.6150

-0.2497
0.4638
0.5030

4.2107

0.1203
0.3246
0.0547

-0.9479

0.1456
0.2519
0.0144

-0.8320

-0.1594

0.9389
0.5853

-0.7286

0.5 X*
u*
E* 
AV*

-0.2092
0.3347
0.3705
0.5089

-0.2716
0.2950
0.3282
3.5206

0.0863
0.2856
0.0319
-0.9483

0.0005
0.2473
0.0000
-0.8450

-0.2088
0.6648
0.3706
-0.7662

0.0 X*
u*
E*

-0.1900

0.2445
0.2751
0.4045

-0.1825
0.2226

0.2547
3.4493

0.0668
0.2492

0.0201

-0.9471

0.0765
0.2272

0.0037
-0.8325

-0.1280
0.5273

0.2798
-0.7647

Table 1.3. a). Varying Allocation Cost and Comparing Hedging Effect.
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° ( d i ) (±A,-H) 
( - A. -H)

(±A,H) 
(-A,H)

(-A,±H)
( - A - H )

(A,±H)
(A,-H)

(:±A,±H) 
{ - A - H )

10 X ’ 
U* 

E* 

AV*

-0.3657
0.6397
0.6158

0.5305

-0.4291

0.4371
0.4572

22.6835

0.1473
0.4224
0.1124

-0.9954

0.0326
0.2467
0.0032

-0.9289

-0.3450
1.0442
0.6210

-0.8912

20 X *
u *
E* 
TV*

-0.3181

0.7379
0.7401
0.7487

-0.3531

0.5813
0.6091
7.4854

0.1623

0.3764
0.0969
-0.9786

0.1027

0.2523
0.0143
-0.8961

-0.2481

1.1764
0.7649
-0.8183

30 X *
u*
E*

AV*

-0.2272

0.8767
0.9481
1.2532

-0.2823
0.7552
0.7984

5.0531

0.1861
0.3423
0.0989
-0.9418

0.1016
0.2554
0.0144

-0.8437

-0.1487
1.3561
0.9762

-0.6477

40 X*

u *
E*

AV*

-0.1585
1.0788
1.2165
1.8486

-0.2319
0.9810
1.0444

4.5737

0.2069
0.3214
0.1046
-0.8910

0.1016
0.2593
0.0188

-0.7868

-0.0730
1.6177
1.2582

-0.3926

50 X*

u*
E*

AV*

-0.1058
1.3857
1.5954
2.6056

-0.1576
1.3455

1.4415
5.2996

0.2274
0.3125

0.1140
-0.8426

0.1562
0.2904

0.0480
-0.7249

-0.0339

2.0785
1.7200
-0.0082

Table 1.3. b). Varying Demand Standard Deviation and 

Comparing Hedging Effect.

As shown in Table 1.3. a), the effect of allocation option decreases in the allocation 

cost. The allocation option can improve expected profit through reduce the total capacity. 

The variance control depends on both the production allocation and the marginal 

expected profit. So the performance is complex.

As shown in Table 1.3. b), the effect of allocation option increases in the demand 

variance. The variance control is stable as the demand variance increases.
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1.5 Foreign Production Center Problem

1.5.1 Model and Solution

Now we consider the case where the production facility is in the foreign country 

(market 2). We use the subscripts -D  is a reminder that the variables in this expression 

are related to the foreign production center. Assume the incremental profit per unit sold at 

the second stage in market 1 (in home currency) and market 2 (in foreign currency) are

ri, -D  i s ) = Pl ~  STl, - D  a n d  h,-D { S ) = S { P 2 ~  T2,-D )

The results for the foreign production center can be obtained similar to the argument 

for the counterpart problems with domestic production center in Section 1.4.

1.5.2 Impact of Allocation Option

The optimal location of production center may shift from foreign to domestic or from 

domestic to foreign by the effect of allocation option even for the risk neutral problem 

with fixed demands, which is illustrated in the following two examples.

Example 1.5.1. Consider a risk neutral problem with a foreign market problem such that 

d  = 1 , p  = 1, c e ^  = 1 , r  = 2 , c_Deyr = 2 .9 , t_d = 0 ,  E [ r ] > 0  and £ '[ r D] > 0 .  It is easy 

to verify that the risk neutral optimal capacities for all cases either with or without 

allocation option at both locations is X*N = X*N = X*N _D = X*N _A _D = 1.

For the case without allocation option, the separation of the profits between the 

domestic and foreign production centers is

AN_At±D = E { r - c e ^ ) - E ( r_ D - - T - =  -0.1 < 0

and the optimal location of production center is foreign.

Comparing with the cases with allocation option, the allocation policy is the same if 

the location is foreign. If the location is domestic, the units are sent to market 2 only if
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s > t  and the expected total profit increases £  (t - s)e(s)ds  > 0 . The optimal location of 

production center shifts from foreign to domestic, if J  ( r  -  s)e (s) ds > 0.1. _

Exam ple 1.5.2. Assume that ce77 = 2.35 , Tx - 0 , t2 =<>°, c_De ^  = 1, tx_d - 1.25, 

t 2_D = 0 , px = 3.4, p 2 = 1 and dx = d2 = 1. Assume ln(s) ~ N (ju ,l) satisfying E[s)  = 2. 

It is easy to see that p x>ceyT +TX, E (sp 2) < c e ^  +t2, p l <c_DeyT + E [ stx_d } and 

E(sp2- T 2_D}> c_DeyT. For the case without allocation option, the optimal capacities are 

X*N _A - d x - l  and X*N _A _D = d 2 = 1 for the domestic and foreign locations from the first 

order condition, and results

&n,-a,±d = ( P i - c e Vr)dx- { E [ s ( p 2-  r2_D)] -  c ^ ) d2 = 0.05 > 0.

The optimal location of production center is domestic.

For the case with allocation option, if the production center is domestic, the optimal 

capacity and expected profit are still X*N = 1 and ( px - c )dx from T2 = ° ° . l f  the location

is foreign, given X N _D =1, the units are sent to market 1 if . v <  px/ ( l  + Tx_D} = 1.5. The

expected total profit increases 2.25 Jo15[ l .5 - s > ( s )  ds > 0.05. Thus, the optimal location 

of production center shifts from domestic to foreign. ■

Intuitively, the impact of allocation option on one location may be more significant 

than the other one, which results the shift of production center.

1.5.3 Im pact of Financial Hedging

By the same intuition, the optimal location of production center may shift from 

foreign to domestic or from domestic to foreign by the effect of the financial hedging. 

Intuitively, the risk related to exchange rate is larger when the production center located 

in foreign country. Thus, the financial hedging may shift the production center from local
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to foreign by the effect of financial hedging. However, for some special cost structure, 

the financial hedging have a more significant effect when the production location is local. 

We illustrate this counter situation in the following two examples.

Example 1.5.3 considers the case of using allocation option and Example 1.5.4 

considers the case of no using allocation option.

Example 1.5.3. Assume that ce^  = 1, p x ~  3, p 2 - ^ ,  ^ = 0 , r 2 = 1.2 dx = d 2 = 100, 

r 1_D = °°, t 2-d =0  and ln (s) ~ IV (1,1.2). Let A U_H±D-U*_H-U*_H_D and

^U_H±D-U*_H -U*_H_D denote the domestic production advantage. The optimal 

production location is domestic if and only if AU_H±D > 0  or AUH ±D > 0 . We report the 

production advantages for c_De (0 ,l ]  in Figure 1.8 (a), the optimal location of 

production center is shifted from foreign to domestic by the financial hedging effect as 

c_De/r g (0.1,0.3]. Intuitively, the local production center supplies both markets and bear

larger risk. By using financial hedging, the objective can be increased not only from 

variance control, but also the increment of capacity. Thus, the production center may shift 

from foreign to domestic. ■

Example 1.5.4. Assume that ce77 = 2,  r, = r 2 = r2 _D = 0 , t x_d = °° , px -  5 , p 2 = 1 and 

ln(s) ~ A (l.5 ,0 .5 ) . The demand distribution is (d,,<i2) ~ (lOOJ,1 0 0 (1 -J ) )  and 

P ( S  = 0) = P ( S  = l) = 0.5. We report the domestic production advantages for 

c_D G  [0.5,1.5] in Figure 1.8 (b). The optimal production center shift from foreign to 

domestic by the financial hedging effect as c_D G  (0.95,1), since the local production

center can increases the capacity and improve the objective more efficiently after the 

financial hedging controls the risk. g
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Figure 1.8 (a )  (b) Domestic Production Advantage vs. Foreign Production Cost.
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1.6 Managerial Insights & Conclusions

Within our stylized modeling framework, we have been able to quantify and better 

understand the effects of a comprehensive risk management approach (via simultaneous 

operational and financial hedging) to demand and exchange rate uncertainty in supplying 

a domestic market and a foreign market. Our research clearly demonstrates that, when 

demand uncertainty enters the picture, the risk averse firm can no longer ignore financial 

hedging issues in making its capacities. Similarly, financial hedges, based on arbitrary 

capacity assumptions, such as producing to meet expected demand, fail to provide 

effective total risk control.

Our research starts from a stochastic foreign market. Given a capacity and using a 

group of call option currency contracts at the prespecified exercise prices, the optimal 

hedging sizes are the unique solution to the linear equations. The optimal capacity is 

uniquely determined by close formulation for the independent case (i.e. demand being 

independent with exchange rate) when using a single call option with exercise price equal 

to the ratio of the localization cost and selling price, i.e. t f  p .

Our analysis clearly shows that the financial hedge consists of two separated parts: 

one minimizing the profit variance and the other balancing the risk premium. The risk 

premium is small in the most practical environments and its effect on hedging size is 

independent with production decisions. Thus, we present strong results by ignoring the 

risk premium and focusing on minimizing the profit variance. For the independent case 

with zero risk premium, the optimal financial hedging policy, among all combinations of 

call options, put options and forwards contracts, is a single call option with exercise price 

equal t o r / p , and the optimal hedge size simplifies to Q* (X ) = G1 ( X ) - G 1 (0 ) , where

G '( x )  is the demand loss function. The optimal capacity is uniquely determined by a 

close formulation.

When demand and exchange rates could be correlated, the optimal hedging is 

complex. On the other hand, for most of the cases, well designed call option currency 

contracts, as prescribed by our formulas, prove very effective in controlling total risk.
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Our analysis clearly establishes the values of allocation option and financial hedging 

for risk averse firms. For the independent case, the use by a firm of either an operational 

hedge (via an allocation option) or a financial hedge will affect its optimal capacities. For 

the case without financial hedging, the use of an allocation option favors increased 

production, in an effort to improve expected profits and the objective value. Similarly, the 

use of a financial hedge, as intuitively expected, allows an increased capacity to improve 

expected profits and the objective value through better control of profit variance no 

matter using or no using an allocation option if the risk premium is positive. For the cases 

using financial hedge, using allocation option increases capacity, and improves expected 

profit and the objective value if the risk premium is zero.

For a domestic market and a foreign market, given a capacity and using a group of 

call option currency contracts at the prespecified exercise prices, the optimal hedge size 

vector is the unique solution to the linear equations. For the independent case with zero 

risk premium, the optimal hedge for a given capacity X  among any combination of call 

options, put options and forward contracts, consists of the two call option currency 

contracts at one exercise price equal to t2/  p 2 and another equal to the per unit profit at

the local market. However, there may exist multiple local optimal capacities. The 

financial hedging increases the capacity for the case in the presence of allocation option, 

and increases the capacity for the foreign market when no using allocation option. The 

allocation option may increase or decrease capacity even if the demands are constants.

If the production center is located in foreign country, we can obtain the similar 

results by the symmetric structure of the considered model with domestic production 

center. Our examples illustrate that both allocation option and financial hedging can shift 

the production location from domestic to foreign or from foreign to domestic.

Our research makes an important first step in closing an apparent gap in the 

international operation and finance literature on quantifying the simultaneous setting of 

operational and financial hedging policy parameters, and explaining the nature of 

implications of such practices for capacity decisions of global firms.

The present paper has dealt with the simplified environment of a firm supplying from 

a production center, a home market and a foreign market. An obvious, but non-trivial, 

extension of the same research theme is to address how the presence of multiple
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production centers and multiple foreign market destinations affect the nature of the 

operational and financial hedging practices. It is always a question of interest to 

understand if there exists more than one firms in competitive environments, the use, or 

the lack of use, of operational and/or financial hedges in the presence of demand and 

exchange rate uncertainty could have serious repercussions not only on the magnitude of 

production output but also on fundamental facility network structural choices, such as the 

desired location of production facilities. We have started exploring some of these issues 

in our ongoing research efforts.
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Chapter 2

Dynamic Pricing through Customer Discounts for 

Optimizing Multi-Class Customers Demand Fulfillment
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2.1 Introduction

2.1.1 Problem Motivation

In this paper we study the problem of allocating inventory over a period to demand 

from several classes of customers when partial backlogging of unfilled demand is 

possible. The customer classes are distinguished by the price they are to pay for the item 

and their willingness to wait for fulfillment of demand in a subsequent period. Demand 

from each customer class is modeled as a realization of a (non-stationary) random 

variable during each of several stages a period is divided into. The firm is able to view 

this demand in each stage prior to making an allocation decision on which demand to fill. 

Unfilled demand may then be backlogged for fulfillment. The probability of this 

occurring is influenced by a discount the firm may offer as well as some class specific 

parameters.

The problem arises in a number of industries. The motivating example is based on the 

fulfillment of demand at a wholesaler of industrial products. At the firm's distribution 

center, orders are received throughout the day from customers for whom there is a fixed 

price for a unit (generally from contractual terms or competitive environment) and who 

expect same day shipping. Given a limited inventory, the distributor may choose to offer 

the customer next day shipping on the item in hope of being able to fulfill the request of a 

more valued customer. In order to induce the customer to wait for supply, the distributor 

may offer a discount. Similar problems are found in on-line catalog and direct market 

channel businesses where firms need to determine their availability to ship on a given 

day. For example, an on-line bookseller may quote a time until shipping that is based on 

the ability of the firm to withdraw a unit of demand from a warehouse. Customers 

arriving early in the day may be quoted a longer time until shipping so that inventory may 

be reserved for customers com ing later in the day with higher valued orders.

In this paper we show how to determine the inventory allocation, dynamic discounts 

to offer based on inventory availability and class-based demand realization, and 

customer-class prioritization (referred to as the ADP problem) in a model where each 

period is divided into a number of stages. We show that inventory should be allocated in
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each stage in class-order as long as the inventory is above a determined threshold level. 

These class-based threshold levels are shown to be monotonic in the waiting demand and 

the inventory remaining. The initial inventory level is determined by a base-stock 

ordering policy. For the continuous time demand case, we provide an efficient and robust 

heuristic for its solution in real time. For every arriving customer a simple rule, executed 

with real time efficiency, can be used to determine if the customer is allocated 

immediately inventory, and if not what discount to be given in an effort to have him wait 

(backorder) rather than walk away (lost sale). The paper contributes to the literature by 

incorporating dynamic price discounting (i.e. offering economic incentives for customer 

retention fully reflecting all available inventory and realized demand information) with 

inventory rationing in a model which can be solved in an efficient manner. Our solution 

approach executed in a near optimal heuristic way can address the real time revenue 

management needs of agile distribution and direct market channels.

2.1.2 Literature Review

The research is related to work in inventory rationing, offering economic incentives 

for customer retention, revenue management and dynamic pricing. Early work by Topkis 

(1968) considered the rationing of inventory to demand from n customer classes when a 

period is divided into several intervals. He shows that a base-stock ordering policy is 

optimal and demand is fulfilled in class order as long as inventory is above a class- 

dependent allocation level. A model similar to Topkis under a different operating 

environment has been considered by Frank, Zhang and Duenyas (1999). Cohen, 

Kleindorfer and Lee (1988) consider an (s, S) inventory system where two classes of 

customers arrive, with the higher priority customer being served first. The focus of the 

paper is on the determination of the reorder level 5 and the order-up-to value S through 

the development o f  heuristics and approximations. Deshpande, Cohen and Donohue 

(2003) analyze a static threshold-based rationing policy for a continuous review two 

demand classes system with backorders. Ha (1997), considers the problem of allocating 

inventory to n customer classes in a make-to-stock environment where stock 

replenishment is explicitly modeled as a production system through a M/Ej/1 queue. The
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optimal policy is characterized by an inventory level below which production is initiated 

and an inventory level for each customer class above which demand will be fulfilled for 

the class. De Vericourt, Karaesmen, and Dallery (2001) investigate various stock 

allocation polices in make-to-stock production systems and assess the benefits of 

inventory rationing polices. Gerchak, Parlar and Yee (1985) consider a two concurrently- 

arriving class problem where the decision is when to reject lower class customers based 

on the time to go and inventory. Weatherford, Bodily and Pfeifer (1993) study the 

determination of dynamic allocation limits in a two-class problem with the possibility of 

lower-class customers purchasing at a higher class price. In all these papers, the 

unsatisfied demand is either entirely backlogged or entirely lost. On the other hand, we 

consider the partial backlogging case where price discounts are used to induce a desirable 

level of backlogging. In a recent paper Cattani and Souza (2002) investigate inventory- 

rationing policies in multi-class a-priori determined fixed price environments with 

application for firms operating in a direct market channel. They compare the performance 

of these rationing policies with a pure first-come, first-serve policy under various 

scenarios for customer response to delay (lost sales, backlog, and a combination of lost 

sales and backlog). The inventory system is fed by a production system or co-located 

supplier with exponentially distributed processing times. Our paper emphasizes the use of 

dynamic policies in combination with inventory rationing in partial backlogging 

environments, with the backlog level affected by the dynamic pricing polices of the firm.

Another related stream of work in the inventory management literature looks on 

economic incentives to retain customers in the presence of stockouts. Cheung (1998) 

considers a continuous review model where a discount can be offered to the customers 

willing to accept backorders even before the inventory is depleted, but the proportion of 

backordering customers is not a function of monetary incentives, as is the case in our 

work. The optimality of offering backordering incentives for a simple inventory system is 

explored in DeCroix and Arreola Risa (1998), but their analysis does not exploit different 

customer classes or dynamic discount adjustments. Further, their analysis seems to imply 

that the majority of cost savings is as a result of offered backordered incentives after the 

stockout occurs, which is not necessarily true in a multi-class profit differentiated 

customer demand environment as the one examined in our paper.
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Chen (2001) inspired by e-retailing environments studies optimal pricing- 

replenishment strategies that balance the costs due to discounted prices and the benefits 

due to advance demand information from customers willing to accept longer lead times 

for the right discount. In the paper the firm offers a menu of price and lead-time 

combinations, and customers can choose their priorities. Chen focuses on finding an 

optimal menu of static prices, as opposed to dynamic discounts we use, and he does not 

consider inventory-rationing policies, which are essential elements of our formulation. 

Wang, Cohen and Zheng (2002) study a problem of meeting demand from two demand 

classes with different lead time requirements. However, their paper focuses on studying 

required inventory levels in a two echelon supply chain, where each location follows a 

base stock policy with no inventory rationing, whereas we specifically focus on dynamic 

pricing and inventory rationing for a single location.

The problem is also related to the well-studied revenue management problem in 

which a firm seeks to determine the number of units of capacity to reserve for sale to 

customers arriving at a later time. A lot of that work was motivated by the airline industry 

practices, and sets prices for flights in the presence of multiple customer classes. 

Belobaba (1987) considered a heuristic approach to solving the multiple fare-class 

problem. Wollmer (1992), Brumelle and McGill (1993) and Robinson (1995), considered 

extensions and refinements determining optimal solutions. In all these models fare classes 

are assumed to arrive sequentially so that the solution of the problem requires 

determining how much to reserve for other fare-classes. A review of the extensive 

revenue management literature is provided by McGill and van Ryzin (1999). In our 

paper, we assume concurrent arrivals of demand from different classes.

A number of recent papers study a dynamic version of the perishable asset revenue 

management problem where the selling price may be varied continuously over time. 

Gallego and van Ryzin (1994) consider a model where the demand rate for an item 

depends on the current price offered and solve for an expected revenue m axim izing  

policy. Bitran and Mondschein (1997) study a similar problem with non-time 

homogenous demand and demonstrate the effectiveness of restricting the number of 

prices to a small set and enforcing monotonic policies with respect to the price over time. 

Zhao and Zheng (2000) study an extension of Gallego and van Ryzin (1994) with non-
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homogenous reservation prices. Finally, Feng and Xiao (2000) find an exact solution for 

the multiple-price model in continuous time when monotonic pricing policies are 

assumed. Our work is related to this work as we search for allocation policies in a 

multiple-price model, where we explicitly incorporate the time-dimension. However, our 

model differs from this work in that we offer dynamically adjusted price discounts only 

to the customers denied prompt service. Further, while previous papers have assumed 

rejected customers are lost, we allow for rejected customers to wait, i.e., they are 

(partially) backlogged with a probability dependent on a price discount.

Outside of the revenue management context, there has been work on integrating 

dynamic pricing with production/supply policy but mostly for single product 

homogenous customer populations (e.g., Zabel (1972), Thowsen (1975)). In more recent 

work, Chan, Simchi-Levi and Swann (2001) consider a multi-period deterministic 

demand model where pricing and production decisions must be made for each period 

with some capacity constraint. Similarly, Federgruen and Heching (1999) in a stochastic 

demand setting focuses on showing optimality of a policy where a base-stock is ordered 

up-to and a list price is charged.

2.1.3 Paper Organization

The remainder of the paper is as follows. In Section 2.2 we formally introduce the 

model. We present a solution to the problem in Section 2.3. In Section 2.4 we consider 

the continuous-time version of the problem. In Section 2.5 we discuss properties of the 

ADP policies and provide useful insights from some numerical experiments. We draw 

our final conclusions in Section 2.6.
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2.2 Model

Based on the problem description, we consider a model in which there are K  

customer classes and M  stages in each period. Let subscript ie  I  denote the

customer class and subscript represent the stage. Let the per unit revenue

from class i be p ( and, without loss of generality, assume p l < ■ ■ ■ < p K . Let dtj be the 

demand from customer class i in stage j  and let dj ={dlj ,---,dK]} be the demand vector 

in stage j . We assume that each customer orders exactly one unit. We assume that the 

demand distribution in each stage is known and independent of previous stages. Let Xj  

denote the supply at the start of stage j  and let Yj be the inventory allocated in stage j  

to demand.

Let Zjj be the discount offered to a class- i customer in stage j  if they are not 

allocated supply promptly and let Zj = {zlj, "- , zKJ] . Thus a customer, initially denied 

supply, will pay p (. -  ztj if he commits to wait for delivery. Let the probability that a 

customer will wait be ytj and we assume for simplicity that it is defined by the linear 

function

Y ^ C C y + P ^

That is, those customers not receiving supply choose to wait based on independent

1 - < x .
Bemouli random variables. We restrict 0 < z.. < ------ -  so that 0 < yu < 1. We also assume

B

that a tJ and /3tj are non-decreasing in i , i.e. where 0 < a Kj < ■ ■ ■ < a Xj < 1 and 

0< ftKj <■■■< P j .  Thus customers with lower prices are more likely to wait. If a

customer chooses to wait, the firm may still allocate supply to that customer in a 

subsequent stage or may not allocate supply until the end of the period.

We adopt the following costs. The per unit cost to the seller is cp . If the number of

units allocated in stage j  is larger than a given delivery capacity, g j , the firm incurs a
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per extra unit delivered marginal cost, Cj , which we refer to as a congestion cost. Such

cost results from unplanned overload of resources and may result from utilizing alternate 

facilities or additional resources often at a premium rate. Further, we assume that an 

additional cost cw is incurred for each customer that waits for supply until the next period 

(e.g., in a distribution center, fulfillment does not occur until the next day or after the next 

delivery from the supplier.) This cost is analogous to a backorder cost. Let c, be the cost 

of lost demand for those customers that choose not to wait. We let h be the holding cost 

for units at the end of the period. We assume pi +cl - c p - c w> 0 and cp >h  so that

production and inventory holding are profitable. We also assume that cw+ h > c M so that

any units that could be delivered at the last stage (end of the period) are not delayed 

delivery for next period due to unrealistically high congestion costs.

Let di} be demand from class i waiting from a previous stage in stage j  with

dj ={dlj , -",dKjY  Let dj =^dj ,d ]̂ .  (Throughout the paper, we use the notational

convention of symbols with an arrow, i.e., , refer to demand from class i waiting from

previous stages, while symbols without an arrow refer to new demand from class i 

arriving in stage j . Symbols with a bar, i.e., t ,  refer to all demands, i.e., both new and

waiting demand.)

Let Dj = {dtj + di} j , the total new and waiting demand in stage j .

Let Dj = 'Y^i=xdij be the total new demand in stage j .

Let Dj = dy be the total waiting demand in stage j .

Let D{j -  be the new demand from classes i and higher in stage j .

Let Z> = dy be the waiting demand from classes i and higher in stage j .

Let Qj be the set of all permutations of and let e  £2; be some ordering

of the demand, both new and waiting, in a stage j .  Let D“} be the position in the 

ordering Q)j that the Ith customer from class i arriving in stage j  is to be served in stage

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

j  and let D® be the position in a)] that the Ith demand from class i waiting from a 

previous stage is to be served in stage j .  Then (Oj = |d® ,z3® | for i = and

I = I, ■■■, dtj (or dy) defines a priority order of service for the demand D; .

Let 7tUj Xj,dj^j  be the margin obtained from the Ith unit of demand from

new class i customers and let n Uj {Yp Zj ,o)^Xp d ^  be the margin obtained from the Ith

unit of demand from waiting class i customers for an allocation, discount and priority 

order given the inventory and demand. Then,

71 hj ( Yj ’ z j ’07j X j ) dj j

and n IU(Yj ,Zj,a>j\xj , dJ) =

Pi Y j > D “

Yij{Pi~zij ~ CP ci Yj < Duj

0 Y j < D “

(2 .1)

(2.2)

Let n .  ( X j , d j ) be the optimal expected profit from stage j  onward given inventory 

X  j and demand vector d j . The expected profit for stage j  onward for a given Yj , 

and (Oj, is

>zl (Yl , z l ,»>l \ X l ,dl )

■ z (2.3)
1=1 /=1 

~ c j ( Yj ~ S j ) + ^ d J+i [n_/+i 

Observe a congestion cost is incurred for the units allocated over the capacity, g . . 

(Note (x)+ = m ax(0 ,Jt). Also let the indicator function, 1̂  = 1 if x  is true, 0 otherwise.) 

The problem the firm faces at stage j  is

n j ( X j ,d j )= max ] ^ j  [Yj, Zj, a>} | X ,, d j )] (2.4-a)

s.t.

(Oj e  Q.j (2.4-b)
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YJ <r mn ( X j ,DJ) (2.4-c)

X y+1< X . - r .  (2.4-d)

zu - { l ~ a ij)/fij * for a11 * (2-4' e)

Yj , ztj > 0 , for all i (2.4-f)

We define the end of the period profit, f IM+1 ( X M+vdM+l) = (cp - h } X M+l to be the

value from the units held to the next period, and note that we have already accounted for 

the expected revenues from waiting demand.

With no initial waiting demand, the profit for the multiple stage problem is

m a x ^ (X ) = - c pX + £ ; [ n i (X ,J 1)] (2.5)

We refer to the problem of determining the inventory allocation, the customer 

discounts and the prioritization of demand for all stages as the Allocation, Discount and 

Prioritization (ADP) Problem.
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2.3. ADP Problem  Solution

We solve the problem through dynamic programming starting first with the final 

stage M  and then solving the problem by induction for stages M  - 1, • • •, 1.

2.3.1 Stage M

Determining the Discount ziM For stage M  , we have the following:

Proposition 2.1: Given {X M ,dM the unique optimal price discount is 

4  = m ax^min[ , ( 1  - a iM ) /PM] , o)

where ziM = r ^ cr - c? - 3 ^ f o r i  = l . . . ' K .

(2.6)

(2.7)
iM

Proof. From (2.3), the first order conditions for the unconstrained problem

are

max
*M ( ^ M  ’  Z M  ’  |  X M , d M  j  J

&  dn,
= r- liM

dziM i=i dziM

( ®iM F  PiM ZiM )  (  P i  ZiM Cp Cw j  

_  &iM _  PiM ZiM )  Cl

'■iMl-.s.t.-.YM<DlM <)Zn

~  ^  PiM ( P i  F  Cl ~ Cp ~ Cw ) ~  &iM ~  ^ PiM Z-U

=  0

for all i = 1,..., K  .

which gives z,M as above. Constraining the solution so that 0 < yiM <1 provides the

result.
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Let y*M = a iM + /3iM zm . Observe that the discount z*M offered does not depend on 

X M , YM , dM or (0M . This allows us to determine (0M and YM independently below.

Priority Determination ofM and Allocation Determination Y*M. We define the

(per unit) demand denial penalties, Lm and LM , to be the reduction in profit if a 

demand from class i or one of the waiting demands, respectively, cannot be satisfied in 

stage M  . Following the development in (2.1) and (2.2):

We make the following claim:

Claim 2.1: A priority sequence in stage M  is optimal fo r  all allocations Yu if  and only 

if  the demand denial penalties are non-increasing with the order o f  the priority sequence.

Proof. Assume coM is an optimal priority sequence. Consider a pair of demands with 

DVi.u = Dm  +1, that is, the Ith customer of class i is followed by the I th customer of 

class i' in (dM . (For purposes of presentation, consider the set of waiting customers just 

another class.) Suppose that Lr > L and YM = Dm  . Then the profit of the sequence can 

be improved by interchanging the two in the demand sequence which is a contradiction. 

Similarly, suppose L. < L  if DVVM > D m  for all i , i Then choosing any set of 

demands and rearranging them cannot decrease the cost for any YM , therefore, coM with a 

denied demand penalty non-increasing is optimal. _

Based on the claim, we have the following:

(2 .8)

and

(2.9)
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Proposition 2.2: A priority sequence with customers in dM served in class order, from  

K to 1 prior to serving any waiting demand, dM , is optimal.

Proof. Observe that L. > L  if i ’> i since

A 'm  -  A m  =  (  P r  +  c t ~  f v u  ( P r  +  c i ~  4 m “  CP ~  ) )  “

[ P i + c i ~ Y m  ( P i + c , ~ Z i M  ~ CP ~ c w ) )

^ ( P r  + C , ~  Yvm  ( P r  +  c i ~ 4 m  - c p ~ c « ) ) -  

( Pi +C, -ViM ( P i + c , - z iM- c p - c w))

since ziM maximizes yiM {z)[pt  + c, ~ z ~ c p - c w) conditional on

0 ^  YiM = a iM + PiM z.iM ^ 1 (C-P- Proposition 2.1).

Letting ziM = z'lM = m in( ,  (1 - a iM) / (3iM) implies y"iM = m in(a iM + zVM, l ) . 

Since a m > a m  and PiM>PVM and y*M <1, yM > a rM + PrMzVM = Y*-U ’ and 

p v +c{- c p - c w> z*.M from Proposition 2.1,

L vm -  A m  ^  P r  -  P i  +  YiM ( ( P i -  4 m )  -  (  P r  ~  4 m ) )  +

( 4 m - Y m ) ( P r + c i - Z VM ~ c p ~ c 4 )

>0

Also observe

P m  ~  L m  ^  L i m ~  L m  =  P i + c i ~  Y*im ( P i + Ci ~  4 m - c p - c w ) - ( c p + c w ) > 0 .

Therefore o f  serves new customers in class order prior to serving any waiting customers.
■

Proposition 2.3: Allocating the inventory to all o f  the demand at the end o f period, i.e. 

Y*m = m in( X m ,Dm), is optimal.

Proof. The result follows directly from the assumption cw+ h > c M . ®
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Concavity of [ l l M ( X M , d M )]

In order to show the analogous results for the general stage j , we need to prove 

several monotonicity properties hold. To do so we introduce the following notation:

A n J ( x i , d j )
L e t   -------- - be the change in the profit in stage j  if an additional unit of inventory

AX.

is available for allocation in stage j , i.e., if X ; +1 unit are available rather than Xj  

A n  j l X j j j )
units. Let -------^ r -------   be the change in profit if an additional customer is waiting in

stage j , i.e., if the number waiting is Dj +1 rather than Dy.

Note from (2.3), ——M+1 —̂M+1> M+1̂  =c - h  and also note from the discussion
a* m+1

, A n M+1 x m+1, j m+1
above,--------------------------- = 0.

XDm+,

Proposition 2.4: a) is decreasing in X M, increasing in Du ,

continuous and EsA * n j A x „ ] > c p - h .

is decreasing in DM, increasing in X M, continuous and

cf + c- a £ i , [ A n « / A5* - ] - 0 - 

Proof. The profit rate function is
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( X M,dM j ^  A;rM {ym , zm ,com X M,dM j

* x M

A cM(m in(X M,D M) - g M)+ a [ ( x m - D m)+ (cp - h )  
H  ---------------------------------------  + — =----------------------------- :

Am ( %iM * | ’ dM ) )

Am — X M < Am

C p + C w ( C m A ^ « )  

cp - h

Am — ^m < Aw + Aw 

Aw + Aw ^ X m

So that AYlM/ A X M >cp - h  and ATlM/ A X M is decreasing in X M from (2.8), (2.9) and 

the assumption cw+ h > c M . Under the assumption that the demand is continuous, taking

expectations provides the result in 1).

A similar approach provides the results in 2) as

and by observing that the absolute value of the partial derivative of the second term is 

dominated by that of the first term. ■

2.3.2. Stage j

We now consider the problem faced at stage j . We show by induction how the

discounts to offer, zi}, the priority to assign to customers in allocating inventory, (ti-, and

the amount of inventory to allocate, Yj , are found. We show that, as in the stage M

solution, the discounts to offer can be found by comparing the incremental revenue 

received after price discounting, though now an algorithm is required to find a feasible 

optimal solution. We then show that the optimal priority sequence is independent of these 

discounts and orders new customers first (in class order) followed by waiting demand as

£ [ a n „ ( x „ , r f M) / A D „ ] = ( A + c j p ( x „  > D „ ) - c „ P ( X „  >D„  > * „ ) ,

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

in the stage M  solution. Finally we show how to determine the amount of inventory to 

allocate in stage j .

We assume for the induction that for j ' > j ,  E \jA  y ^X y ,d y is concave in X  y and

Dj., that £ ’[A n y./AX'J.,] is increasing in Dy , continuous and - h

and that [An^./AD,..] is increasing in X  y , continuous and

cp +cw> E j  [An.,/ADy,]>0 .  Note that this implies that holding the remaining units in

inventory is profitable and, without loss of generality, we have X j+l = X j  - Y j >  0 in the 

rest of our paper.

Determining the Discount z*

_  P , + c l - c p - c w a v 1

Let

z« +  - E ,

2A , 2
“ ;+!

' ^ ( x ,

ADj+1
(2 .10)

Proposition 2.5: In stage j , zt] maximizes Ttj (Yj, Zj, (Oj| X j , .

Proof.

dz„
(Yj,Zj,(Oj Xj ,dj^j

t=i

= (fi ,  ( p , + c , - z t - c , - c , ) - Y t )ct + £ j.u
d D ,  AFI . / — \

n ? - n $ x ' - r ^

where ci} is the number of customers of class i denied service in stage j . Letting 

Yu = a a + fiijZij and observing dDJ+l/d za = P fa  implies

- a v -  2PijZij + 0 U ( p, + c , - c p - c w)'
dzrj

~dZ = C‘j
A n,j +1

AZVi
(X j - YP d j+i)

(2 .11)
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Noting dfTj/dZij is decreasing in ztj since Dj+l increasing in ztj and

£■- [ AITy+1 jA D j+l J decreasing in Dj+l from the induction assumption, setting

■
dzTj / dzy = 0 and solving provides the result.

By comparing (2.7) with (2.10) we observe that the optimal discount maximizes the 

current profit plus a term that reflects the change in future profits resulting from a change 

in the total number of waiting customers.

Noting that ztj solves the unconstrained problem, the constrained problem, given Y},

X j , (Oj and d J , is:

max 7rj(Yj,Zj,(Oj\Xj,dj) s.t. 0<Zy  < ( l - a ; y) / / ^ :: V /,j, (2.12)

We have the following proposition:

Proposition 2.6: Suppose in an optimal solution, z*, to (2.12) fo r  x, y e  { l,■•■,£) that

1 — CC-1 -  a ri 
0 < z „ . <- ±

.  *  *

^ x y j  ~  ^ x j  yj 2

and 0 < z y j < '  n  >
•  \7

then

(  \  ( 
a *j

P' ~ Tr'x)
P y ~

5 l

P y j J

Proof. Consider the Kuhn-Tucker conditions for Problem (2.12), if 0 < z xj <
l - a .

-  and
A

1 - c t r .  dir, 3 / r ,  l  df t j  l  dn,
0 < z yJ < — -r ^ - , z - ^  = zr-J- = 0 . Then —-----z - ^ - —-----^  = 0 implies, by (2.11)

P y j  Z yj P x f x j  xj  P y j C yj Z yj

a„
-2  zxj + px — -jf

J
-2zy, + Py - - J ~ ■ 0 which gives the result.

The proposition implies that if we sort the classes by pt -  a tj /  fdi} and increase ztj 

from 0 for each class in this order, while maintaining a separation of Aziy and ensuring
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that no Zij exceeds its upper bound, we will eventually find an optimal solution to the 

constrained problem. We formally define this through the following algorithm:

A lgorithm  2.1: D iscount z* Determ ination Algorithm  

Initialization

Let r = pi -cci/ f i j and bt = ( l -£ ! ') / /?  . (Throughout the algorithm we suppress the 

stage subscript j  for ease of presentation)

Order the classes by rr  (For purposes of clarity, we assume without loss of 

generality, that r: >•■•> rK.) Set z, = 0 :V L  Set x = 1 (x  is the last class entering the 

active set, i.e. the set of classes for which z, is not at its upper or lower bounds). Let 

A = {1}, be the set of customer classes that are active (including a class entering the 

active set), Set Az* = {rx - rx+i ) /2  for 1 < x < £ and AzK = 00.

S tep l.R epeat A := A u { x  + l} , x := x  + l while A z*= 0. Set AZj = m in^A {by ~ z y} . Let 

B = { y \ b y - z y = A£>], be the set of active classes that would next achieve their 

upper bounds. Set Az = min(A&,Az*).

Step 2. Test: Is there A z'e (0,Az) such that by letting zy -  zy + Az': V : y e  A , zy solves

(2.10) for one class in A . If so, let zy := zy +A z': V : yG A and stop. (The

solution is optimal at the current levels of zy.) Otherwise, go to Step 3.

Step 3. Azx := Azx -  Ab . zy := zy + A z: V : y  e  A . A := A \ B  if  Az:=Ab.

Step 4. If A = 0  and x = K  , stop. (All zx are at their upper bounds.)

Step 5. If A * 0  and Az* > 0 , go to Step 1.

S tep 6. A:= A u { x  + l} . x := x  + l .  G oto step 1. ■

In the algorithm the value of z, is successively increased from 0 until either the value 

which is active (i.e., in set A ) solves the first order condition or reaches its upper bound. 

Since a spacing of Az* is maintained between active classes, Proposition 2.5 holds for
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active classes. In each iteration either a class enters or at least one class exits the active 

set, so that there are at most 2K  iterations. In each iteration the number of tests (in Step 

2) is 0(log Az) since dffj/dzy  decreases in ztj from Proposition 2.5. This results in the

following:

Proposition 2.7: In stage j ,  given Yjy X ]t oo. and d jy the optimal price discounts 

vector z] is unique and given by the Discount Determination Algorithm. g

Determining co* Following the development for the stage M  case, we define the 

(per unit) demand denial penalties based on (2.1), (2.2) and (2.3)

Claim 2: Ltj and Ltj are continuous, increasing in Dj and decreasing in X }.

Proof. We observe the results from (2.13), (2.14) and the induction assumptions

Claim 2.3: A priority sequence (Oj is optimal fo r  all allocations Yj i f  and only i f  the 

dem and denial penalty  in stage j  is non-increasing with the order o f  the priority  

sequence.

Proof. Similar to Claim 2.1. ■

and

(2.14)

E j i [M I,+1/AD,.+1] continuous, decreasing in Dj+1 and increasing in X } .
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Proposition 2.8: A priority sequence with customers in d] served in class order, from K  

to 1, prior to serving a waiting demand, d j , is optimal.

Proof. Let d  *+1 denote the (random) total demand vector in stage j  + 1 under z7- = z* ■ 

Observe that LVj > Ltj if i ’> i since (suppressing the subscript j  for conciseness)

Lr -  Lj
r (

P r  ~  V *

v  v
r

P i  ~ V i

p v + ci-z*v ~ cp - c w + E-j+i
A n j+i

( x j - Yr d;«)

Pi+Ct-Zi - c p - c w + E-
A n

j  j
w

AD i +1 J J

for yi = a j +/3jzi for any z,- such that 0 < z , < ( l - **, ) / $  since z, maximizes

A n ,
Yt (z) p + c ,—z — c —c + E-tr i  I ** p  vv d

7+1

Lj+1
AO,..

and z, equals either z, or 0 or

(l -  a t )//?  from the monotonicity of E3 f
A n

j +1

AO,.,
( x j ~ Yr d U )

Letting z- = /m 'n (z * .,( l-a ;) /$ )  implies y" = minimax + $ z * , l ) > «,. + /?.z* = y* since 

or,. > and /? > . Therefore

Z,. -  Li > (l -  y\ ) (Pv ~ Pi ) + r,"( 4  -  z-)
/

+(4-4)

> o

p , , + c ( - z * . - c f, - c lv +  £ 7;+1
A n , + 1  /  — #  \

since z* ^ A '+ c , - c p - c w+ £ .
A n

ADJ+1
by Proposition 2.7 and

A n j+1/A D ;+1J > 0  from the induction assumption 

E3 i [A n  J+1 j  ADj+l J > 0 and the assumption pr +ct - c p - c w> 0 . ■
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Determining Y* Let Yi} be the number of units to allocate in stage j  if when the 

last customer to receive a unit is from class i . Similarly, let Yj be the number of units 

allocated in stage j  when the last customer to receive a unit is among the waiting 

customers. We have the following two claims regarding these values:

Claim 2.4: Y*j is unique and solves 

An,

P i + C i ~  z y  ~ c p ~ c w +  

A n

;+1

V+l
AX;.,

A n

( X ; - > ’r dM)

■fa.Zj.afj \x, .d, )

= P i+ci-r* j

=  L <J ~ ( C J l Y1> , 1 ) - E dJ 

=  0

and Y* is unique and solves

A n

AD- ( X ,
;+i

j +1

AX,+1

An

AX
j +1

=  0

A 7 t . / „ — \
Proof. - ^ 7-1 Yt], z.j ,/d ^ X j, dj J is the marginal profit when a unit in X  ] is shifted from

stage 7 + I to stage j  and is used to satisfy a demand of class i . Considered as two 

operational steps, 1) increasing an unit on X j and allocating it to a new demand from

class i at stage j , the marginal profit is Li} -  {c^y  >g j . 2) reducing a unit from X j and 

X J+i, the marginal profit is - E -  |^Anj+1/A X ;.+1 j . By the induction assumption, both 

[A";.,/AX,.,] “ d E- [A n)tl/ADW] are monotonic and so the solution exists 

and by continuity of the demand distribution, unique. A similar proof holds for the case
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that an unit in X j is shifted from stage j  +1 to stage j  and used to serve a waiting 

demand in Y] . *

Claim 2.5: Ytj is non-decreasing in i and Yj < Yl j .

A n A n
P ro o f.  ----------   = L1+1 j -L i j  > 0 from the proof of Proposition 2.8 so that AYlj /A YiJ

^ i+ l,j  ^ i j

is non-decreasing in i . Therefore the solution of A n j /A Y iJ = 0 is also non-decreasing in

■i .

The actual allocation in stage j  follows the following inventory allocation rule: Yj 

equals Ytj if the Y'j1 customer is of class i ,  i.e., DUj =Yij for some 1e  j l , - - - ,^ ]  and 

equals if the Y‘h customer is among the waiting demand, i.e. DUj = Yy for some i and 

I . Finally, if Dj < Y j, i.e., the total demand is less than the optimal amount to allocate for 

all the waiting demand, then Yj equals ZX. In all cases, Yj must be less than or equal to

x r
Since the optimal priority sequence is to serve the new customers in class order from 

K  to 1, prior to serving any of the waiting customers, we observe that DUj is decreasing 

in i and so in light of Claim 2.5 we have the following proposition:

Proposition 2.9: The optimal number o f units allocated in stage j  is unique and is given 

by the inventory allocation rule.

Proof. Suppose that DUj =Yjj for / e  and Ytj < X }. Then all of the new demand

from classes i +1, • • •, K  are allocated inventory and no demand from classes 1, •••,/-1  or 

waiting demand is allocated inventory in accordance with the priority sequence. By 

Claim 2.5 YVj>Yij and by Proposition 2.8, Dl r j <D Uj for i '> i  and Z'e .
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Similarly, for classes i '< i  and all waiting demand, we know YVj <Yij and Drrj > DUj . 

Therefore Drrj *  Yrj . Therefore Y* =Yij. A similar argument follows if DUj = Y} and

DUj < D < Yj for all i so that letting Y* = Dj is feasible and optimal, since holding the 

remained units is profitable from the induction assumption. In any of these cases, if 

X j < Yj then from (2.4-c) we know Y* = X * . ■

Having established z*, a>* and Y*, we need to show that the induction assumptions 

hold.

Proposition 2.10: a). [A r^ /A X ^  is  d e c r e a s in g  in  X jt in c re a s in g  in  Djt 

c o n tin u o u s  a n d  [AIT^/A X  j  ~^>cp —h .

is  d e c r e a s in g  in  Djy in c r e a s in g  in  X jy c o n tin u o u s  a n d

Proof. If X j < D j , the incremental inventory A may be allocated at stage j  and

Yj < X j  s o  Y* = Y j. Finally if, D < F. and D < X , , then DUJ ^ D k Y ^ Y j  for all i and

P i + c i - z i j - c p - c w

i + C i - r l  _ rAn,.iW__ __  ̂ J  -I

If the incremental inventory A is allocated at stage j  + 1, then
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Since we always allocate the units to the stage with higher incremental profit, then 

from the induction assumption, it must be that

r An,A 7tj 
AX~

= max •

> E y
“ j+l

1=1

A n

11 j+l
J+l

AXy+i

j+i
AX

j + i

> cp - h >  0

Since Ltj, Lj and Ed | [A n j+1/A X j+]] are decreasing in X }, increasing in D] , and

continuous from Claim 2.2 and the induction assumption, by taking expectations the 

result in a) holds.

A similar approach provides the results in b) by

r A n ,A n , /  - v
= max- c + c -  Ey

I
+•*">

c<1

AD. V ; }> P W dJ+l
L ^ j+ i J

{Cj l gj< D ^Ed,
ij+1

ADJ+l

Let X* be the optimal base-stock held. We have:

Claim 2.6: X * is unique and solves ts7i ( X ) / AX = - c p + Edi [A n , ( X , dx) / AX, J = 0

Proof. The result holds from (2.5) and Proposition 2.10 b). ■

We summarize the results in this section as follows:

Theorem 2.1. For the Allocation, Discount and Prioritization (ADP) Problem, the 

optimal price discounts, the optimal priority sequence, the optimal unit allocation policy 

and the optimal base stock level are unique. ■

2.3.3 Expected Demand Heuristic
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The computational time for the optimal ADP solution increases exponentially with 

the number of the stages and the customer classes. In this section, we introduce the 

expected demand heuristic (EDH) which assumes demand equals its expectation in each 

stage when we determine the price discount and allocation rule.

EDH First, find the optimal price discount at stage M  , i.e. z*M, using (2.6). Let 

*m-i anc* zeM_i denote the solution to the ADP problem at stage

M  - 1  given { x M_v dM_x j assuming the arriving new demand equals its expectation, i.e., 

dM_x = E (d M_x) = ( e ( J 1m_,) ,••• ,£ (dKM_x)). We can determine [YJ, z) ) by induction for 

each stage j  given {^Xp d ^  and assuming the arriving new demand dj = E [d y) . We

can find the base-stock level X e under the policy {Y‘ ,z ej)  = {Yx ■ Since

we only calculate the price discounts and the allocation policy once at each stage, the 

computational time is reduced significantly. Moreover, since YJ and z) are constant

matrices with two dimensions { x ^ d ^ j ,  the system can make real-time decisions if we 

store the values of {Ye,z e).

We can show that the EDH is optimal when all demand is lost, i.e. atj = /?y = 0 so 

that Dj -  0 . In this case, the profit function at stage j  is dependent only on the inventory 

level from the previous period and there is no need to offer a discount (z*. = 0 ). Further, 

the demand denial penalty, Ltj, is independent of the demand in the previous periods. 

Therefore, considering the following period, there exists a unique pair of inventory 

levels, denoted a s ( X*JjH, X *2J+1), where X*\+l solves ESJ _ M l j+l/X X J+l] = ^  and X*JJ+I

solves E j i ^ATI;+1/A X y+1]  = Li} -  Cj. Therefore, we can use a simplified allocation rule, 

called the critical inventory level rule, where class i in stage j  receives the last unit
N

allocated in stage j  if and only if the on-hand inventory falls to X*‘+1 if T. < g . or X*Jj+l 

if Y j > g j .
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Proposition 2.11: For the lost demand case, the EDH approach fo r  calculating price 

discounts and the critical inventory level rule are optimal.

Proof. Since the price discount is zero and there exists no waiting demand, the prioritized 

ordering is naturally from class K  to 1. Noting X*‘+1 > X*2j+l, then similar to the proof of 

Proposition 9, the optimal number of units allocated in stage j  is unique and is given by 

the critical inventory level rule. Since the price discount and the allocation rule are 

identical for any observed demand, the solution of EDH is also optimal to the ADP 

problem. ■

For the general case, we can demonstrate the effectiveness of the EDH for a two- 

stage problem. Given {X ,d Y) ,  the price discount error is

Az - î'l S'l
h + c

max (D2, D2c ) £  X  -  Yl -  D2 > min (D2, D*)]
(2.15)

where zj, and is the global optimal price discount and the waiting demand of EDH, 

respectively. The error on the profit rate function is

dn:,

1clt<T>

1 -N i <JY,

(2.16)

= { l - r ; ) ( h + c „ ) P

m a x | d j ,D\ \E (d{)]

* x - r fl- D 2

> :•m in[D *|di,D ‘ | E (d l )\^

Because the likelihood of demand waiting is based on the discounts which are 

calculated optimally in the EDH given the expected demand, the probabilities

p (̂ D2 > X - Y 1- D 1  ̂ and p (d 2 > X  - Y l - D \  j are close to each other for most practical 

cases. Thus, the probability terms in (2.15) and (2.16) are very small. This implies that
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the heuristic is quite accurate, even though the exact error bound cannot be clearly 

established.

To illustrate the accuracy of the EDH heuristic, we present computational results in 

Table 1. We experiment with the following data set: cp = 1, h = 0.6 , K = 2, a }, = (0,0)

and p  = (p 1,2 ) , /?y = (/? j,0 .l) , j = l , 2 .  All demands dtj, i = 1,2 and j  = 1,2, are 

independent with each other and follow the same normal distribution with ju = 300 and 

(7 - 9 0 .  We present results by varying the parameters p1 and /?,. As it can be seen both 

the EDH expected profit and the initial inventory decision are very close (less than 2% 

deviation for the profit and less than 1% deviation for the initial inventory) to those of the 

optimal ADP solution. (The same results hold over larger numerical sets we 

experimented with, but not reported here for brevity of presentation reasons).

Parameters Expected Profit Base Stock

Pi Pi ADP EDH Error ADP EDH Error

1.2 5.0000 457.1375 457.1375 0.00% 954.6 954.6 0.00%

1.4 1.2500 504.9331 495.7363 1.82% 913.1 908.2 0.53%

1.6 0.3125 538.9647 538.7590 0.04% 965.8 961.9 0.40%

1.8 0.0781 616.9130 616.8974 0.00% 1174.8 1177.2 -0.21%

2.0 0.0195 719.8512 719.8504 0.00% 1232.4 1232.4 0.00%

Table 2.1: Accuracy of Expected Profit and Base Stock Level for EDH
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2.4. A Continuous Time Heuristic

In most cases, demands arrive according to a continuous time stochastic process and 

firms are required to respond to demands immediately, either accepting the order or 

offering a discount to encourage the customer to wait for delivery in the next period (or, 

of course, rejecting the demand). We can approximate such a case by dividing the period 

into a large number of stages, M  , of, say, equal duration. However, in making this 

approximation, we need to assume that the congestion cost, C j-  0 , because the capacity

in each stage, g j , becomes increasingly small as M  increases. Therefore, with no

congestion cost, it is easy to see that, in an informal sense, there is less information 

available when a decision is made regarding discounts. Because of this the profit for the 

firm would decrease as M  increases.

Because of the computational difficulty in solving the continuous time problem 

optimally for a large number of stages, we consider a heuristic that determines whether a 

demand should be accepted based on the current inventory, waiting demand and the 

assumption that all future demands will occur in a single stage. That is, consider a single

arrival from class i at t .  Let X  (t) and d  (?) denote the inventory level and the waiting

demand at time t .  Let dk ( t ,T ] denote the random variable of demand from class k

customers in the time interval (t,T] for all classes. We consider the following two-stage

heuristic (TSH):

Consider a two-stage ADP problem where the first stage has just been completed with 

dn = 1 and dn = 0  for i ' # i ,  X { = X [ t ) ,  dx - d  ( t ) , dj2 = dt (t , T]. That is, there is only

the arrival from class i to consider for allocating the current inventory and the demand 

for the second stage is assumed to be distributed as the total of all future demands. 

Because the congestion cost is 0, the waiting demand is only allocated inventory at time 

T . Then we can calculate a price discount in TSH, denoted as z* (f) , is according to 

(2.6) and (2.10) and Proposition 2.7.
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* ? ( ')= max min

P i + C i - c p - c w g t ( t )

+ 
v 2

2 2 J3,{t)

k l > * c w) p ( x ( , ) > X d ( , )  + l .d l (r.r])
,0

■ m
/  )

- z
1=1

We then allocate a unit of -X'(t) to the class-/ customer if and only if 

X  (/) > X * |t , Y j d ( t ) , where X * \ t , Y . d [ t )  is the unique solution of

p i + C i ~ z - { t ) - c p - c w

+  ( h  +  c w ) p ( x i > Z d ( t )  +  Z d k ( t , T ] )
v ' ' s

[p, + <j- ( a ,  (T) + P, ( T ) z f (T ) ) ( p , +c , - z?  ( T ) - c p - c . ) ]

•P(Zf rf, (i,r] > X, > E ‘ , d t ( t , T ] )
+ (cp + c „ ) . p ( Z d l (t ,T] + ? . d ( t ) > X l >' Ldi ( t J } )

+ ( c , - * ) - P ( x ,  >Zd,(r,r]  + Id(»)) ,

as shown by Lemma 4 where

r Pi  +  C i - C y - c .  a , ( r )

2 2 f l ( r ) ’ f i ( T )
z! ( T ) : max mm ,0

It can be shown from the formulation of z- (t) that the heuristic has the properties that 

the offered discount increases with higher inventory and decreases with greater waiting 

demand. Further, as the number of waiting demands increase, the cut-off value X*\t,Y ,d

increases. The base stock level for the TSH is given by solving the single stage problem 

assuming that demand for each class in the stage is distributed according to the demand 

for the entire period, i.e., as in dt l ( 0 , r ] .

The computational time of TSH is almost real-time, since the considered two-stage 

problem is simplified to a modified single stage problem. Because the values of

z f ( / ) |x ( / ) ,Z < i( / )  and X*\t,Y ,d  can be stored for bounded demand functions, the

heuristic can in practice be applied in real-time.

Intuitively, the TSH should be very close to the optimal solution, since it can adjust 

the allocation and delivery decision solution according to the observed demand
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information. Observe that the optimal expected profit for a single stage problem in which 

a single decision is made after observing all of the demand is an upper bound of the 

expected profit for the TSH since the inventory allocation is globally optimal.

To illustrate the effectiveness of the TSH heuristic, we present computational results 

in Table 2.2. We experimented with the following data set: cp = 10, h = 8, K = 2,

«r = (0,0) and /? = (/?,,20), /? = (/?,,0 .0l). The class demand dx(t) and d2(t ) ,  

t e  (0,100], follow a pair of independent Poisson distributions with arrival rates A, = 0.9 

and = 0 .1 . We again varied the parameters p x and fix. From Table 2.2, it can be seen 

that TSH was within less than 0.5% from the upper bound to the optimal ADP expected 

profit (upper bounding approach described in previous page with the use of the one stage 

problem). Further, the TSH solution resulted in total fill rates per class (i.e., total demand 

per class eventually met) that were within 2% of those provided by the optimal ADP 

solution, with the TSH solution provided higher fill rates for class-1 and lower for class-2 

than it is in the profit optimizing solution. (The same nature and magnitude of 

performance holds over larger numerical sets we experimented with, but not reported 

here for brevity of presentation reasons).

Parameters Expected Profit Total Fill Rate Per Class

Pi A ADP TSH A D P/j = 2 T S H /i = 2 A D P/i = 1 T S H /i = l

12 5.0000 274.6168 273.5470 100% 99.07% 100% 100%

14 1.2500 446.4792 444.5983 100% 98.47% 100% 100%

16 0.3125 603.1823 601.1290 100% 98.11% 99.52% 99.66%

18 0.0781 758.8521 757.4440 100% 98.19% 96.99% 97.24%

20 0.0195 926.6229 926.1622 100% 98.08% 96.98% 97.19%

Table 2.2: Accuracy of Expected Profit and Total Fill Rate Per Class Performance.
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2.5. A Com parison of the ADP Solution to a FCFS Policy

In this section we compare the optimal solution of the ADP to a First-Come/First- 

Serve (FCFS) policy. This discussion illustrates the role of dynamic inventory rationing 

and price discounting in the optimal solution.

2.5.1. First-Come-First-Serve (FCFS) Policy

The First-Come-First-Serve policy is a simplified ADP policy without inventory 

rationing consideration. We use the superscript /  to identify the variables and functions 

under the FCFS policy throughout the paper. The profit for the two-stage problem is

Observe that under this policy there exist no inventory rationing considerations, and 

we offer price discounts only if there is no inventory left. The problem the firm faces at 

stage j  is

The profit for the multiple stage FCFS problem is

Proposition 2.12. The unique optimal price discount at stage j  o f the FCFS problem is

(m in ( X j ,D j) - g j )+

where U fM+l  ( x fM+ l , d fM+ l )  = (cp - h ) ( x fM - D M ) + .

m a x n / ( X / ) = - c pX /  + [ n f  ( x / ,d1)] (2.19)
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z*f = max m (2.20)

Proof. Similar to Proposition 2.1.

Let y*f  -  a :j + . Observe that the discount z*f offered does not depend on X } ,

d j . This allows us to determine the optimal base stock independently below.

Proof. The results follow from considering the first order conditions for the problem in

2.5.2 Role o f Dynamic Priorities, Inventory Rationing, and Price Discounts

We compare the expected profits, base stocks ( X  ) and demand waiting rates ( y )  for 

the FCFS solution to those of the optimal solution to the ADP problem. Because the 

FCFS solution is a feasible solution to ADP, its expected profits may be at most as large 

as those of the optimal solution. We observe that the optimal solution is achieved by both 

allocating inventory to the most profitable customers through their prioritization and by

Proposition 2.13. I f decreases in j ,  the

optimal FCFS base stock X*f  is unique and solves

d I l f ( X f )

d X f

-  ~CP ~ h - P

=  0

where Li = p t -  y f  (/?,. -  z f ) - ( i - r T h

(2.19).
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offering discounts to retain others. In the FCFS solution, only the latter, i.e. discounting, 

is retained.

As the following example illustrates, the comparison of base stock levels and demand 

waiting rates between FCFS and optimal ADP solution is non-conclusive. The optimal 

ADP solution may either increase or decrease, vis-a-vis the FCFS solution, the base stock 

levels and the demand waiting rates.

Example 2.1: Assume that M  = 1 , K = 2 , and customer class demands are independent 

normal random variables dx,d 2 ~ N(jU, cr). We have D = dx+d 2 ~ N^2jU,yf2a j ,

Ed>x (di/ D)  = 1/2 and , from Proposition 4 and 13,

E
"An/ ( x , d ) _- E ~m(x,d)~

AX AX

= P ( D > X ) f l I ' E D>x { E \ ~ f , h P ( D M > X > D , )
. V  /  1=1

P ( D > X )
1=1

A
P ( D > X )

- P ( D > X > d 2) + L2 - P ( d , > X )

P ( D > X )
~ P { d 2 > X )

Thus, X f *>X*  if and only if p [d  > X*f ) > 2P (d2 > X*f ) .

For the case with X f * > X \  if a x = a 2 and = fi2, we have y*2 = y*2 > y*/ = y\

from Proposition 2.1 and 2.12. The demand waiting rate under FCFS may be higher in 

certain cases than under the ADP policy. _

We now look at the ADP and FCFS solutions without price discounts, i.e. given 

Zy = 0 , or equivalently with = 0 . We have directly from Theorem 1:

Proposition 2.14: For the multiple-stage ADP problem without price discount, the 

optimal priority sequence is to serve the customers in dj in class order, from K  to 1,

prior to serving the waiting demand, d j . The optimal allocation policy is unique. _
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Proposition 2.15. I f  E

decreases on j , the optimal base stock level fo r  the FCFS problem without price 

discount is unique. g

We compare the solutions with and without price discount for the ADP and FCFS 

solution to illustrate the role of price discounts. Obviously, the dynamic price discounts 

will increase the expected profit for either the optimal ADP or FCFS solution, as they 

wouldn’t be used otherwise.

Proposition 2.16. Use o f price discounting reduces the profit maximizing base stock level 

fo r  the FCFS policy.

Proof. Given an inventory allocation X  ■, the value of E2 [dn^/dX^.] with zfj = z*/ is 

no larger than with z f  = 0 , since the demand denial penalties are minimized when 

zfj = z* f. Thus, price discounting reduces the optimal base stock level, which satisfies

The result in Proposition 2.16 does not apply to the general ADP problem.

2.5.3. Num erical Insights

Exam ple 2.2: Assume that cp = 1, h = 0 .6 , K  = 2 , p  = (l.2 ,2 ) , £^ .= (0 ,0 ), 

[dj =  (10,0.1) for ./ = 1,2. All customer class demands dtJ, i = 1,2 and j  = 1,2,  are 

independent with each other and follow the same normal distribution with p  = 300 and 

cr = 90.  The congestion cost in the first stage is cl = 0.6 with g, = 0 and is zero in the 

second stage, i.e. c2 = g2 = 0 . We also assume cw = c, = 0 .0 . (Note that non-zero c, are

£j,[an,/3x,]=o.
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effectively captured as part of the price parameter variations, and the price discount has a 

similar effect as cw.)

Item name ADP ADP-Z=0 FCFS FCFS-Z=0

Expected Profit 489.1698 427.7304 266.9272 262.2025

Base stock 932.0068 812.9883 1181.9 1192.3

Discount Cost 17.0220 0 2.7270 0

Total Fill Rate

Average 99.98% 65.80% 97.08% 94.46%

Class-2 99.92% 99.46% 94.16% 94.46%

Class-1 100% 32.16% 100% 94.46%

Prompt Fill Rate

Average 71.59% 65.80% 93.94% 94.46%

Class-2 99.92 99.46% 93.94% 94.46%

Class-1 43.26% 32.16% 93.94% 94.46%

Table 2.3: Results of Example 2.2

The ADP solution not only has the highest profit, but also the highest total fill rates. 

Inventory rationing increases the profit by 83.26%, reduces the base stock level by 

21.14% , and increases the total fill rate of class-2 demand by 6.12%. The average total 

fill rate is also increased, even though the base stock is reduced.

The effect of price discounts for the case with inventory rationing is much more 

significant than without inventory rationing. For the case with inventory rationing, price 

discounting increases the expected profit by 14.36% , increases the average total fill rate 

by 51.95% and the class-1 total fill rate by 210.95%. Also, note that price discounting 

increases the base stock for the case with inventory rationing, but has the reverse effect 

for FCFS policies. While price discounting improves class-2 total fill rate for inventory 

rationing policies, it decreases the corresponding fill rate for FCFS ones.
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Figure 2.1 a )  b) report the effects of demand variance on expected profits and base

stock levels for our various policies on the data set of Example 2.2. All the expected 

profits might decrease with the demand variance as is intuitive. For the optimal solution 

to the ADP, the profits are quite stable (profit reduction in most examples less than 0.1%) 

since most of the class 2 customers are served promptly and the cost of denying 

immediate demand satisfaction demand to the class-1 customers is small. The expected 

profit of the FCFS solution decreases more drastically with an increase in variance, as 

would be expected. Similar to a newsvendor-like formulation and for a base stock level 

less than the mean demand (as is the case in this example), an increase in the demand 

variance reduces the base stock level. We observe that the base stock for the optimal 

solution does not necessarily decrease with an increase in variance. Because of customer 

class prioritization, an increase in the variance increases the “marginal contribution” from 

the class-2 customers (i.e. the product of the probability of an additional unit being
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2 450 - ---------------------------------------------------------------
a.
•o 400 - 

2  350 -

u  250 -----------1-----------1-----------1-----------1-----------1-----------1
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M
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Figure 2.1 a) b). Expected Profit and Base Stock Level

vs. Demand Variance
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Figure 2.2 a) b). Expected Profit and Base Stock Level

vs. Demand Ratio

to class 2  customer times the profit margin of this customer), but decreases the “marginal 

contribution” from the class-1 customers. (This is in contrast to both customer class 

“marginal contributions” decreasing in the FCFS solution). The combined effect results 

in at first increasing and later decreasing with increasing variance of the base stock level.

In Figures 2.2 a )  b) we change the ratio o f  the demand o f the class-2 to c lass-1

customers in the first and second stages and present the expected profits and the base

stocks. The ratios are reported E{ d2j^ j E { d Xj} , for 7 = 1,2, from j  = 1 to j  = 2 , and

show an increasing ratio of class-2  demand in the second stage reading the figures from 

left to right. (Note in these examples we let the mean total demand in each stage be 1200

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

and maintain a standard deviation of 90 for the demand from each class in each stage.) 

For the optimal solution to the ADP, the expected profit increases with the increasing 

demand 2 in the second stage because fewer units are allocated in the first stage where 

there is a congestion cost. The reduced congestion cost is greater than the increased cost 

of delaying the class-1 customers. The base stock decreases because more class-1 

customers are denied demand in the first stage rather than incurring the congestion cost. 

However, for the FCFS policy, the expected profit decreases and the base stock increases 

with an increasing ratio of class-2 customers arriving in the second stage. More inventory 

is required to satisfy this later demand reducing the overall profitability.

u  5140  

5138
• H

o  5136

a- 5134

® 5132

S  5130o«
HU

Figure 2.3. Expected Profit vs. Stage Number 

(Under EDH Policy)

In Figure 2.3 we report the expected profit preference of the EDH policy when the 

number of stages per period increases. We have implemented the following version of 

EDH policy. We are setting the starting base stock level according to a two stage EDH. 

At each stage the inventory allocation rule and price discounts are those of a two stage 

EDH with first stage demand the current stage demand and second stage demand the total 

demand of all remaining stages. As can be seen from the figure, the expected profit 

preference of the heuristic is robust with a slight, less than 0.1%, deterioration in 

expected profit performance with an increase in the number of stages. (For the example

in Figure 2.3, the mean and variance of the demand are 2,000 and V2 • (90) respectively, 

and there is no congestion cost).
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Example 2.3: In this example, we compare the results of the two stage heuristic for 

the continuous time problem to the solution to the single stage problem and the FCFS

ar(t) = (0 ,0 ), f l ( t )  = (10.0,0.01), t e  (0,100]. The class demand dx(t) and d2{t) follow 

a pair of independent Poisson distributions with arrival rates \  and .

Figures 2.4 a )  d) show the change in the expected profit as a percentage of the

single stage problem upper bound, the base stock level and the fill rates as 4 / / ^  , the

ratio of class-1 to class-2 customers, increases. We observe that the TSH is effective in 

maintaining a high profit while there is a significant degradation in the profits when there 

is either no discounting ( z  = 0 ) or no inventory allocation as in the FCFS solution. The 

profit is maintained by appropriately setting the base stock level and then allocating 

inventory to the more profitable customers. The base stock for the TSH decreases since 

the class-2 customer’s service is assured by inventory rationing. The base stock then 

levels off at an appropriate value when the marginal customer is most likely to be a class- 

1 customer. We observe that the class-2 prompt fill rate in the TSH is very high, with 

only some decline when they are in the vast majority or minority; there are either too 

many class-2 customers to serve all or too few to worry about. Of course this advantage 

comes at the price of class-1 prompt service.

solution. We assume that cp = 10, h = 8, cw= c ; =0.0 ,  K -  2, p  = (10.2,20),

£  100%

-  95%
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• H
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Problem Upper Bound; b) Base stock level; c) Class-2 Prompt Fill Rate; d) Class- 

1 Prompt Fill Rate
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Figures 2.5. a )  b) summarize nicely the desirable features of the ADP policies. The

profit maximizing base stock level of such policies are lower than either the FCFS 

solution without discounting (effectively the newsvendor solution) or FCFS with 

dynamic discounting policies. In this example, stock level is reduced by more than 30%. 

Further the total fill rate is higher than any base stock level. At the profit maximizing 

level, the FCFS solution fill rate is more than 5% less than that of the ADP solution. 

Finally, the ADP solution provides increased profits, in this example more than 10% 

greater the newsvendor and FCFS policies.
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Figure 2.5. a )  b). a) Total Profit; b) Total Fill Rate vs. Base Stock

Finally, in Table 2.4 we report results for an ADP problem with three customer 

classes. As apparent from the table, the TSH policy continues to exhibit impressively 

accurate performance in approximating both profits and fill rates of the ADP policy.
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Class-Ratio Base Expected Profit Total Fill Rate Per Class (1, 2 and 3) 

1 2  3 Stock ADP TSH ADP TSH ADP TSH ADP TSH

0.1 0.8 0.1 281.25 1514.3 1512.2 100% 100% 99.21% 99.24% 100% 99.67%

0.2 0.7 0.1 268.07 1407.9 1406.3 100% 100% 99.93% 99.89% 100% 99.94%

0.3 0.6 0.1 262.21 1287.6 1286.1 100% 100% 100% 99.95% 100% 99.94%

0.4 0.5 0.1 262.21 1171.4 1170.5 100% 100% 100% 99.96% 100% 99.96%

0.5 0.4 0.1 262.21 1045.3 1044.4 100% 100% 100% 99.96% 100% 99.94%

0.6 0.3 0.1 262.21 928.4 927.5 100% 100% 100% 99.95% 100% 99.91%

Table 2.4: Accuracy of Expected Profit and Total Fill Rate Class-Ratio 

Performance
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2.6. Conclusions

In this paper, we are concerned with a problem of allocating inventory to demand 

from multi-class customers when partial backlogging of unfulfilled demand is possible. 

The probability of this occurring is influenced by dynamic discounts the firm may offer. 

We present a solution approach to the problem of determining the inventory allocation, 

the customer discounts and the prioritization of demand for all stages (referred to as ADP 

problem), through dynamic programming starting first with the final stage and then 

solving the problem by induction. We also consider the continuous-time demand case and 

provide an efficient and robust heuristic for its solution in real-time.

In our numerical analysis we study the role of inventory rationing and price 

discounting on the ADP solution while varying several parameters including the demand 

mean and variance, and the ratio of class-1 to class-2 customers. The ADP solution 

always increases the expected profit vis-a-vis the FCFS or no price discounting solutions. 

By increasing the demand waiting rate, ADP policies reduce the base stock level as well 

as the incurred holding and congestion costs in almost all cases.

On a technical aspect, the ADP solution is much more complex than its counterpart 

for the complete lost-demand case. Because waiting demand affects the performance of 

the later stages, the decisions among the stages are dependent on each other. Under 

assumptions of time homogeneity, we are able to show that the marginal value of 

inventory decreases in time, the allocation Y* increases in time, the price discounts z*

decreases in time. Further we show that the allocation in earlier periods decreases if the 

number of high-class customer arriving later increases compared with lower-class 

customers.

As potential research extensions, one can consider more general contexts to the ADP 

problem. For example, one could consider class-dependent lost demand penalties or 

class-dependent constraints on the achieved fill rate. On the other hand, the current ADP 

problem context allows for minor variations of certain assumption without any significant 

effects to its solution. For example, alternative interpretation of the congestion cost as 

stage holding cost, or time-dependent demand delaying penalty, leads to similar results. 

The ADP approach works well for multiple-units customer demands, if the total demand
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is much larger than the size of any one customer order. In our future research, we intend 

to study the design of profit maximizing contracts exploiting differences in prices and 

service levels for different customer classes when the firm intends to use ADP policies in 

serving those customers.
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Chapter 3

Optimizing Multi-Class Deterministic Demand 

Fulfillment through Dynamic Pricing and Inventory 

Rationing
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3.1 Introduction

3.1.1 Problem Motivation

In this paper we study the deterministic demand inventory problem of allocating 

inventory and offering price discounts to several classes of customers when partial 

backlogging of unfilled demand is possible. The customer classes are distinguished by 

the price they are to pay for the item and their willingness to wait for fulfillment of 

demand with a reasonable delivery delay. The firm may offer a customer either a prompt 

service or a delaying delivery service with the associated price discounts according to the 

current inventory information. The probability of customer waiting rate is influenced by 

some class specific parameters. The inventory is replenished by a continuous review 

policy. We focus on the deterministic demand problems in this paper, including the 

problem with constant arriving rates on the infinite horizon, or called the Economic Order 

Quantity (EOQ) problem, and the time varying demand problem, or called the Dynamic 

Economic Lotsize (DEL) problem, and the problem with multiple stages.

The multi-customer-class problem occurs in many practical environments. For 

examples, some customers may choose higher contractual price associated with higher 

service level. Some computer companies ask customers to choose warranty contracts 

contingent on the sold computers, or offer price discounts for delivery delay. The 

delivery cost of the firm, which can be treated as a kind of price in this paper, may be 

different among the customer classes, for the sake of order sizes or customer locations. 

Dekker Kleijn and De Rooij (1998) discuss a case studying on the inventory control of 

spare parts in a large petrochemical plant, where parts are installed in equipment of 

different criticality. Kleijn and Dekker (1998) list more real applications in their survey 

paper.

For the deterministic inventory problems with single customer class, Zipkin (2000) 

provides a context book including extensive results for the EOQ, DEL and multi-stage 

problems. On the other hand, the rationing and pricing results for the multi-class 

deterministic demand problems are rarely explored. As one of the results closest to our 

work, Moon and Kang (1998) provide an optimal rationing level in a continuous review
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(Q ,r) policy for an EOQ model with two customer classes and the unfulfilled demands 

completely backordered, while the value of Q and r are given constants.

In this paper, we introduce a frame work for the multi-class demand problem with 

inventory rationing and dynamic price discounting in the deterministic and partial 

backlogging context. We use the prompt service welfare to measure the firm’s benefit if 

offering prompt service to a customer. This concept not only reduces the technical burden 

by calculating the inventory cost associated to the customer at his arriving time, but also 

interprets the firm’s incentives of allocating inventory and offering price discounts. We 

propose an optimal continuous review policy for the EOQ model (still called EOQ 

policy), and illustrate that both inventory rationing and price discounting can increase the 

average profit and customer fill rates significantly. Then, we apply the generalized EOQ 

policies for some time varying demand and multi-stage problems, as well as explore the 

efficient heuristics for the considered frame work.

3.1.2 Literature Review

Our research is also related to work in inventory rationing, offering economic 

incentives for customer retention and revenue management. Early work by Topkis (1968) 

considers the rationing of inventory to demand from n customer classes when a period is 

divided into several intervals. He shows that a base-stock ordering policy is optimal and 

demand is fulfilled in class order as long as inventory is above a class-dependent 

allocation level. A model similar to Topkis with two priority demand classes, one 

deterministic and the other stochastic, has been considered by Frank, Zhang and Duenyas 

(2003). Nahmias and Demmy (1981) were the first to analyze a rationing policy in a 

continuous review environment. They consider a two-customer-class system with Poisson 

demand. They focus on evaluating fill rates for given rationing and reorder policy. Moon 

and Kang (1998) generalized their results to the problem with n class demands. 

Melchiors, Dekker and Kleijn (1998) consider a similar problem within a lost sales 

context. Deshpande, Cohen and Donohue (2003) analyze a static threshold-based 

rationing policy with optimal parameters for a similar model with two demand classes. 

Cohen, Kleindorfer and Lee (1988) consider an (s, S) inventory system where two classes
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of customers arrive, with the higher priority customer being served first. Their paper 

focuses on determining the reorder level s and the order-up-to value S through the 

development of heuristics and approximations. A review on rationing literature is 

provided by Kleijn and Dekker (1998). In a recent paper, Cattani and Souza (2002) 

investigate inventory-rationing policies in multi-class fixed price environments, where 

prices have been a priori set, with application for firms operating in a direct market 

channel. They compare the performance of these rationing policies with a pure first- 

come, first-serve policy under various scenarios for customer response to delay (lost 

sales, backlog, and a combination of lost sales and backlog). The inventory system is fed 

by a production system or co-located supplier with exponentially distributed processing 

times.

Most rationing literature considers either the completely lost sales context or the 

completely backorder context. It is not necessary to offer price discounts for these two 

special cases. Besides, as far as we know, there is no optimal policy provided to the 

continuous-review inventory rationing problem yet, though the heuristics have been 

studied for more than twenty years. In this chapter, we introduce an optimal dynamic 

economic order policy associated with inventory rationing and dynamic price discounting 

in the partial lost sales context.

Another related stream of work in the inventory management literature looks on 

economic incentives to retain customers in the presence of stockouts. Cheung (1998) 

considers a continuous review model where a discount can be offered to the customers 

willing to accept backorders or substitutable units even before the inventory is depleted, 

but the proportion of backordering customers is not a function of monetary incentives, as 

is the case in our work. Gale and Holmes (1993) consider a similar model in the 

economic literature. They discuss the use of advance-purchase discounted prices to divert 

demand from a peak period flight to an off peak period flight. They show by doing so, a 

m onopoly airline would expand output and total surplus. The optimality o f offering 

backordering incentives for a simple inventory system is explored in DeCroix and 

Arreola Risa (1998), but their analysis does not exploit different customer classes or 

dynamic discount adjustments.
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Chen (2001) inspired by e-retailing environments studies optimal pricing- 

replenishment strategies that balance the costs due to discounted prices and the benefits 

due to advance demand information from customers willing to accept longer lead times 

for the right discount. In the paper the firm offers a menu of price and lead-time 

combinations, and customers can choose their priorities. Chen focuses on finding an 

optimal menu of static prices, as opposed to dynamic discounts we use, and he does not 

consider inventory-rationing policies, which are essential elements of our formulation. 

Wang, Cohen and Zheng (2002) study a problem of meeting demand from two demand 

classes with different lead time requirements. However, their paper focuses on studying 

required inventory levels in a two echelon supply chain, where each location follows a 

base stock policy with no inventory rationing, whereas we specifically focus on dynamic 

pricing and inventory rationing for a single location.

For the research work related to the integrated consideration of inventory rationing 

and dynamic pricing, Ding, Kouvelis and Milner (2003) consider a periodic inventory 

problem with multiple classes of customers. They show how to determine the inventory 

allocation, dynamic discounting and customer-class prioritization in a model where each 

period is divided into a number of stages. They also provide an efficient and robust 

heuristic for the continuous time demand case. Different from optimizing the profit in a 

periodic review model, this paper considers the continuous review inventory problem 

with multi-class deterministic demands.

3.1.3 Paper Organization

We organize this paper as follows: Introduce the infinite horizon problem in Section 

3.2. Determine the EOQ policy in Section 3.3. Illustrate the role of inventory rationing 

and price discounting in Section 3.4. Explore the optimal and heuristic policies for the 

DEL and multi-stage problems in Section 3.5 and 3.6, respectively. Finally, survey the 

conclusions in Section 3.7.
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3.2 Formulation of the Infinite Horizon Problem

Based on the problem description, we consider a model in which there are N  

customer classes and let subscript i -  l,---,iV denote the customer class. Let the per unit 

revenue from class i be pt and, without loss of generality, assume px < ■ ■ • < p N . Assume 

the demand of class i arrives at a constant rate A. in an infinite horizon problem. There is

no lead time or capacity limit on an order.

We consider a continuous review policy in which the demand fulfillment is rationed 

based on customer classes, i.e. we may deny prompt service for some low profit 

customers and hold the inventory for some high profit customers when the on-hand 

inventory level is lower than a certain level. Assuming the system is in the partial lost 

sales context, we can offer a price discount to increase the customer retention when the 

prompt service is denied. An order is triggered at an reorder point R  with an order-up-to 

base stock level Q , and an order policy is defined as (Q ,R ) . (We will show that R is

determined by the total per-time-unit backorder cost, not by the number of backorders at 

the reorder point.)

Given an order policy (Q ,R ) ,  when a class i customer arrives at time t ,  the firm 

may offer one of two types of services: the prompt service and a delaying service with an 

associated per-time-unit price discount zr  We describe a service package as ( yl, z, ) ,

where y, =1 means that the prompt service is available; otherwise y, = 0 . Let (Y ,Z )  

denote the set of ( y,, z,) ,  where Y and Z represent the rationing policy and price 

discounting policy, respectively.

Let the probability that a customer will wait be y{ for the delaying service and we 

assume for simplicity that it is defined by the linear function

Yi -  a i + PiZi

That is, those customers choose to wait based on independent Bernoulli random 

variables. We restrict 0 <  zl < ( l - a ,i)//?( so that 0 < y. < 1.

Finally, we introduce some constant parameters:

i l l
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K : Setup cost;

c : Per-unit production cost; assume p i - c > 0 ; 

h : Per-time-unit holding cost; 

ai : Per-time-unit lost demand penalty for class i ; 

bt : Per-time-unit backorder cost for class i ;

The firm’s objective is to determine a decision policy (Y ,Z ,Q ,R ) to maximize its

average profit. Since there is no capacity limit, an order can clean all backorders and set 

up the on-hand inventory at an ideal base-stock level, denoted as Q . Q is identical to 

every order, since we consider an infinite horizon problem and the demand structure after 

each order is the same. The time interval between two adjoining orders is defined as a 

cycle. The cycle time, denoted as T (Y ,Z ,Q ,R ) ,  is unique, since the demand rate is

constant. Maximizing the objective function is equivalent to maximizing the average 

profit in such a cycle.

Let (Y ,Z ,Q \T )  denote a decision policy conditional on given T , and TI(Y ,Z ,Q \T^  

denote the sum of selling revenue, purchasing cost, holding cost and backorder cost in the 

cycle. Let (y *,Z*,Q*\t  j denote an optimal cycle policy. The cycle problem is defined as

n ( Y \Z \Q * \T )  = n m x [n (Y ,Z ,Q \T )]  (3.1-a)

Then, we find an optimal cycle time T* to maximize the average profit among all cycle 

times

T\[y \Z *  ,Q*\t * ) - K

V*

Let R.(y ,Z ,Q \t } denote the per-time unit backlogging cost at the end of cycle. It is easy

to see that a decision policy is optimal in (3.1-b) if and only if it is also optimal in the 

counterpart problem defined by the traditional approach as following

u (y \ z \ q *,r * ) - k  \ u (y , z , q , R ) - K
— —<—*— :— r~ T \— = max —  ,----------  \—T (Y  ,Z  ,Q ,R  ) r.z-Q-*l T (Y ,Z ,Q ,R )
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where the reorder point is uniquely corresponded to the cycle time by R (F, Z, Q\ r ) . 

This problem involves both rationing and discounting, called the “RD” problem.
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3.3 Solution of the RD Problem

Given T  and applied a policy (Y ,Z ,Q \T ) in a cycle, the profit function for

individual customer can be constructed as follows. When a class i demand arrives at 

t e  (0 ,7 ] , given discount rate zlt if yit = 0 , there are three cases for the associated 

holding, backlogging and lost demand cost: 1) h t , if the customer is served promptly; 2) 

at , if the demand is lost; 3) [zit +bj ) ( T - t ) ,  if the customer is served by a unit from the 

next order. The customer’s profit function is defined as

^ ' • y‘ 'Z‘ \T) = { r l l - O ° 2)

The total profit from customers in (t,T] is y ^ z IT\T )d r .  The profit

function for the RD problem is

n { Y , z , ^ T ) ^ , M TM ^ y ^ \ T ) dT s t  <3-3>

The following proposition determines the optimal price discounts given an order 

policy, allocation policy and a cycle time.

Proposition 3.1. Given (Y ,Q \T}, the optimal price discount and waiting rate increase in

time and are uniquely determined as

zit -  max mm
f  , , \p t + at; -  c bi oti 1 -  a {

2 ( T - t )  ~ ^ ~ T P i ~ P ~
,0 and rl = cti + fa * ,, (3.4)

Comments Observe that the offered discount is only dependent on the remaindered 

cycle time and the customers’ own parameters. Since the cycle time is fixed in the cycle 

problem (1-a), the optimal price discount is independent with the order policy and 

allocation policy. This allows us to determine the decision variables Y  and Q easily in 

the later discussions.
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Proof. Given (Y,Q \T ) ,  when a class i customer arriving at 16 (0,7"], we add an 

incremental price discount Azit ■ Azit only affects the profit from the customer it if 

yit = 0 and 0 < yu < 1. The incremental profit is

A n = = p  ^  + a ^ _ c _  ̂  + ^ j  _ ^  + p Zt ) { T - t ).
&Zn t e it

This results (4) from the first order condition, noting the constraint condition that the 

price discount is non-negative and the waiting rate is less than one. ■

Let w, ( r ,zu\t } be the incremental profit by switching a delaying service with 

discount zit to the prompt service when a class i customer arrives at t , called the prompt 

service welfare. We obtain

wi( t ^ il\r ) = ^ i ( t , l \T ) - n ,  (f ,0 ,zit|T )

= (p i - c - h t ) - ( y i [p i - c - ( z it+bi) ( T - t ) ] - ( l - y i )ai ) (3.5)

= ^ - r l) ( p i + a ,- c )  + r i {zu +bi) ( T - t ) -  ht

We will show later in Proposition 3.2 that w,. is decreasing in t e  [0 ,T ].

There exists at most one solution, denoted as t* , satisfying w, z*. T  j = 0 , called the

allocation threshold time of class i demand and Let t* = T  if w ,[t,z*. T j > 0 ,  for all 

te [0 ,T ] .

Proposition 3.2. Given T and applied Z*, the allocation threshold time t* is uniquely 

determined as

f1 -  n ; ) ( Pi +a. - c ) + r l;(  < ; +b) T
t  = min

h + y
-,T (3.6)

I f  0 < a N <-- < a l < l and 0 <  /3N < •■•< then 0 <  t\ < ■ ■ ■ < t*N < T . 

The optimal base stock level is uniquely determined as
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The total per-time-unit backorder cost at the associated reorder point is uniquely 

determined as

Comments The concept of prompt service welfare focuses on the profit of individual 

customer during the whole cycle time. This intuitive approach determines the allocation 

threshold time of each customer class independently given the cycle time. Consequently, 

the order policy follows directly.

Proof. Applying the optimal price discount policy Z*, we add an incremental unit on Q 

and allocating it to a class i demand arriving at time t , which is denoted as Ayi(. The 

incremental cycle profit, denoted as AIl/Ayi( , is equal to the benefit from this customer 

and

which implies that the marginal profit decreases with time. There exists either a unique

solution t* for wt (t,z*v| r )  = 0 , or t* = T  if wt (t , z*t \t  ̂> 0  for all t e  [0,7"], and results

(3.6).

where r* is the number of backlogged demand at the end of cycle.

The optimal rationing rule T*is to allocate the units to the demand arriving at t < t*.

Let u and v be two times such that 0 < u < v < T . Since ziv minimizes w(. 

choosing ziv = z*u , we have An/Ayiv < ATI/Ayiv I = . and
' 2|V Zt'u

An/Ay,„ -  m /A y „  > ATI/Ay„ -  An/Ay,, | z,„ = z",
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We compare t*x and t*, where x>  y are two class indexes. Choosing y yl = y x t, we 

have All/Ay < All/Ay J  , from y yl minimizing AYl/Ayyt, and zxt > zyt | = . from
Yyt~Yxt x̂l

a x < a y and /3X< fty . Thus we got

ATI/Ay,, -  ATI/Ay > An/Ay„ -A n /A y J
* yt ~ f  xi

= ( l - K ) ( p x + <*x - P y - a y) + f xt (zxl + bx -Z y \ f xt - b y) ( T - t ) > 0 

which implies t*x >t*y , since All/Ay y, decreases with t .

The optimal solutions of follow directly. ®

Proposition 3.3. Given a policy {y*,Z*,Q*\Tj , the optimal cycle time T* is uniquely 

determined by

T (dn/ dT) -Yl  + K = 0 (3.9)

where

T ( d U / d T ) - n  + K

=T(I.l*(p-9-w')-Zl*il*l(T-yl£\T)dT+K <3W>
decreases in T .

Proof. Given a policy { y * , Z * , we consider the first order condition in T . We get

a [ ( n - A : ) / r ]  r ( a n / 3 r ) - ( n - K )  o

BT T 2

which is equivalent to (3.9).

Adding an increment AT  on the cycle time, the term BTl/dT can be calculated 

according to its discrete version.
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an An
dT a t  

1
~ AT

1
AT

f0r+Ar^ ( r ’>;̂ 4 | 7’ + A T ) d T ~ l

Z N  .  (  /  *
_ \

r ) l d r/ _ )

r . . .
J m a x ( f ( ,t; + A tt j

^ i , ( T + A 7 - )  ’  Z i,(r+AT)  | ^

A A

d r

y y

d r (3.11-a)

ZAT -  P  < > m a x ( (* , ( * + A t * J + A 7 '  /  »  *  A T , \  ,

■ 14  / * * ^  r > y<r»z<r r + A r ) d r
'= 1  ' J m i n ( f ; , ( I + A / I )  '  \  /

The first two terms in (3.11 -a) are zero from 7ti (.| T + A T ) = ni (.| T ); the third term i s zero 

from wt [t* ,z .. | r ) - 0  and the continuity of wt and t*; and the fourth term can be written 

as Ai ( p t - c  -  ht* ) /A T  . Thus, we have

A n / A r = 4  ( Pl. -  e -  to ;) = £ 1 , 4  ( p, -  c ) -  Q- (3.11 -b)

Since A n/A T decreases in Q* from (3.11 -b) and it is easy to see that Q* increases in T ,

we have A n/A T decreases in T  and T (d Y l/d T )-T l  = J  ( d l l / d r - 3 n / d r ( r ) ) d r

decreases with T . Thus the optimal cycle time T* in (3.9) is unique. The equation (3.10) 

holds and the decreasing argument follows from (3.11-b) and (3.3). ■

Intuitively, adding an increment AT  on the cycle time, if a class i customer arrives at 

t - A T  g (-A T,t* -  A T ], the profit from this customer is the same as that from a customer

arriving at t when the cycle time is T . If t* - T  and w,;('T,z*7.|7’) > 0 ,  we add the 

marginal unit to the order and the marginal profit for class i customers is 

A { P i~ c - h T ) .  If t* < T  and a class i customer arrives at t> t *, the profit from this
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customer is the same as that when the cycle time is T . The profit increment is the profit 

from customers arriving during (t* -  A J , where we have w, T  j = 0.

If j8t >Q, we have z*it = (\-c c i) / a n d  w(. < 0  as t - > T .  The

allocation threshold times are inner solutions, i. e. t* < T . Then, the result in Proposition 

3.3 can also be driven by adding AT  at the end of cycle. Note that the profit from the 

prompt service is unaffected. The profit from (t* +A T,T + ATJ is the same as that from

(r* ,r]  when the cycle interval is T . Thus, the incremental profit is the same as that in 

(11), since it is from the interval + A T J with wi | r  j = 0.

If $ = 0  and T < { l - a i) (p i:+ai ~ c ) / h , we have wt > 0 for all t e [ 0 , r ]

and offer all class i customer prompt service. This case implies that the stock-out is not 

allowed if the lost sales penalty is large than at > c - p i + h T /( l~ a i) . We will show more 

related results in Section 3.4.3 for the problem of no using price discounts.

We provide an upper bound of cycle time in the following algorithm by finding a 

solution such that T (d ll /d T ) -  II + k' < 0 . A cycle time satisfying dYl/dT  < 0  is an 

upper bound from I I - / f  > 0 . An upper bound of allocation threshold time is then 

determined as tA = ( p N - c ) / h  from d ll/d T  = ~ c ~ h tA) < 0 . Thus, we obtain

an upper bound of cycle time from (3.6)

(h + rl«{z*s +bt) y  - ( i - r l ^ P i + c i i - c )
T  =m ax

1 < /< J V

JV ( v +h)

where t* = (p N - c ) / h .

< t t | h

minl"^*, (z*. +£, )]
\<i<N  L « V « / J

Algorithm 3.1: Determine the RD Optimal Policy:

Initial Condition:

r < = 0 and T > = TA are a pair of lower and upper bounds of cycle time.
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Step 1. Choose the cycle time T  = ( r <+7’>) /2 ,  calculate zit, t* and Q* directly

according to (3.5), (3.6) and (3.7).

Step 2. Calculate II* from (3.3). If the condition in (3.9) and (3.10) holds, i.e., 

T (d ll /d T ) - n  + /f  = 0, then T  is the optimal solution and go to Step 4.

Step 3. Set T* = T  if T  (d ll/d T ) -  II + K  < 0 ; Otherwise, set r < = T . Go to Step 1.

Step 4. Calculate R* and r from (3.8). I

In Algorithm 3.1, we need to search the optimal allocation threshold time and 

calculate the profit integral given a cycle time. Then search the optimal cycle time based 

on the monotony of the first order condition. The computational complexity is in 

C>(rAlo g r A) time.
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3.4 Role of Inventory Rationing and Price Discounting

3.4.1 First-Come-First-Serve (FCFS) Policy

In the FCFS policy, we offer prompt service as long as there are on-hand inventory. 

We offer price discounts only if there exists no inventory left. We use the superscript /  

to identify the variables and functions under the FCFS policy throughout the paper. Given 

a cycle time T f  , defining A = , the individual customer profit is similar to (3.2),

pt - c - h t  t< Q f  /A
(3.12-a)

and the cycle profit is similar to (3.3)

fTf
n / ( z ' , 0 / |T - ') = £ r _ i4 j il „ ! ( T ,4 ,Q i \ T ‘ ) d z .  

The FCFS problem for the infinite horizon model is defined as

(3.12-b)

max
T J > 0

Yl ( z r ,Qr \Tf ) - K
(3.13-a)

where

n (Zf*, Qf*|Tf ) = max |jl ( z f , Qf |Tf ) (3.13-b)

s. t. { l-o c jP i)  > z f  ^ 0  and Qf >0

Corollary of Proposition 3.1. Given [Qf ,Tf }, the optimal price discount and waiting 

rate fo r  the FCFS policy are uniquely determined as

zu = max

r \ “

min
p i +ai - c

{ 2 ( T ' - t )
a t I - a ,

,0
2 2  p :  P i )

and Yu = a i + Pi 4*  (3-14)

Let w f  [t, j denote be the prompt service welfare for class i demand. We have 

w f  (r ,z{, |T f ) = ( l ■- yI  ) ( Pi + a, - c )  + Yi ( z f t +bi)(T f  - t ) - h t
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Let t f * denote the time at which the average prompt service welfare given zf* is zero, 

i.e. ^ ^ ^ w f  {tf *,z*.,Qf  T^ = 0, called the allocation threshold time of the FCFS

policy. Or, t f * - T  i f  (tf , z*., Q1 r )  > 0 for all t f  e  [0,7’].

f*
r  =  m i n ; T

Corollary of Proposition 3.2. Given T f  and applied Z f *, the prompt service welfare 

decreases in t f . The allocation threshold time is uniquely determined as

(*£+ »> )

The optimal base stock level is uniquely determined as 

Qf * = Atf *

The optimal per-time-unit backorder cost at reorder point is

Rf*=H h A*[r rfT*(zfT* + b t )dT  and  r/ * = X w ' V j ‘,/* y f j d r .

(3.15-a)

(3.15-b)

(3.15-c)

Corollary of Proposition 3.3. Applying the optimal policy {zf*,Qf*\Tf ^, the optimal

cycle interval T f * is uniquely determined by

Tf (dTlf / dTf ) - n f + K  = 0 (3.16-a)

where

T f  { d n f /d T f ) - Y l f  + K

= T ’  ( L l A  ( p . ( t , z ' ; , q ' , \ t ' ) j t + k

decreases in T f .

(3.16-b)

3.4.2. Comparison of the RD Solution to the FCFS Solution

Proposition 3.4. Given (Q ,T ), the inventory rationing increases the average profit rate 

and the increment is
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(3.17)

Proof. Compare the conditional optimal policies [tf * ,Z f *\Q,T^ and (y *,Z*\Q,T j . The

RD policy increases the cycle profit, since it allocates the units to the demands with the 

highest prompt service welfares. The RD policy only change the allocation of class i 

customers arriving between t f * and t* , that results (3.17). ■

The inventory allocation shifts some units from some customer classes with lower 

prices to those with higher prices. This kind of shifting is determined by prompt service 

benefit, not by the number of units. The base stock level may increase if the incremental 

number of prompt service for higher profit customers is higher than the prompt service 

reduction among lower profit customers. Or, the base stock level may decrease in the 

otherwise situation. Moreover, the cycle time may also be increased or decreased, though 

the situation is more complex.

3.4.3 Role of Price Discounting

The problem of not using price discount is equivalent to the problem with zero 

discount sensitive degree. We present the solution in the following proposition.

Proposition 3.5. For the RD problem without price discounts, i.e. zjt =0 (or j3t = 0 ) ,  the 

RD policy is simplified as

h + a ibi
(3.18-a)

(3.18-b)

(3.18-c)

where T* satisfies
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I", A + £  = 0

For f/ie completely backorder case, i.e. cci = 1, the cycle time is

(3.18-d)

(3.18-e)

Proof. Given a cycle time T , we have (3.18-a), (3.18-b), (3.18-c) by simplifying (3.6),

(3.7), (3.8) directly. The cycle profit is equal to the selling revenue minus the holding, 

backorder and lost sales costs as following

U = Y N A£—li=1 <

( p, -  c) + a, ( p -  c) ( t  - 1 ) -  | ( r ;  f

Some algebra similar to (3.9) and (3.10) results (3.18-d). Given a, = 1, we have 

abT*
t; = ~:cj:— and (3.18-e) from (3.18-a) and (3.18-d). 

h + a ibi

Proposition 3.6. For the RD problem without price discounts, i.e. zit = 0  (or /? = 0), 

given a cycle time T  > m a x { ( l - a , )(/?,. +at there exists a balance among the

accumulative holding cost at the beginning o f cycle, the accumulate backorder cost at 

reorder point R* and the average inventory cost.

hQ• = «* + £ " / ! , (p ,+ a ,- c ) ( l - t t , )  = (2"„.4 (p , - c ) - T V /T )  + K /T  (3.19-a) 

For completely backorder case, i.e. a t = 1 , the equation is simplified as

hQ* =R* = ( £ f =14(F ,. - c ) - U * /T ^  + K /T  . (3.19-b)

Proof: Adding an incremental time to an cycle time, the incremental profit is the profit at 

[t*,t* + A T with w {t*,z*it. r j  = 0 . We have from (3.2) and yit = a t
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A n /  A T  =  X f l , ( P l -  c) -  X " ,  M  ( !  -  « i )  -  Z ” | W l  ( T  " )

Plugging in (3.7), (3.8) and (3.9), we obtain

( n * - K ) / T  = c ) ~ Z ,w=i (1 ~ai ) - R* = Z ,w=i 4  ( p>- c ) ~ hQ*

and results (3.19-a) and follows (3.19-b) if a t -  I. ■

In (3.19-a), hQ* is the per-time-unit holding cost at the beginning of cycle,

X i l iA ( P i+ai ~ c )0 -~ a i) is the per-time-unit for lost sales, A, (p, ~ c ) ~ n * / r  is

the average inventory cost and K /T  is the average setup cost.

For the general RD problem, some results in (3.19-a) still hold by the analysis on the 

marginal cycle time, such as

* 2 ' = S . l . ' t  ( f t - c ) - n / T  + K / T . (3.20-a)

However, since the optimal price discount zit increases with the arriving time from 

Proposition 1, the result for the total per-unit-time backorder cost only hold in a weaker 

way from (3.8) and the monotony of zit and y*t

0 ( r - O a R ’ a L " 14 r ; r ( < - H ) ( 7 '- < ; ) -  (3-2°-b>

Since the prompt service benefit at t* is zero, we get from (3.20-b) and (3.10)

ht* - ( l - y * - ) ( p ,+a, - c )  = hQ* -  K: )(P ‘ + a‘ ~ c ) (3-20-c)

Intuitively, when the demand is closer to the end of cycle, the firm offers the 

customers higher discounts to increase the waiting rates. Thus, the accumulative 

backlogging cost at the end of cycle is increased.

The price discounts reduce the lost sales penalty and increase the cycle profit. 

According to (3.9), the marginal profit increment and the cycle profit increment have the 

opposite effects on the cycle time increment. Thus, the cycle time may increase as well as 

decrease. So is the associated base stock level.

3.4.4. Static Analysis
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We report the static analysis for the allocation threshold time and cycle time in the 

following propositions.

Otherwise, t* decreases in a t .

Comments The results in a)-e) are neat and intuitive. In f), a higher initial waiting rate 

may increase the accumulative backlogging cost when the customer arriving around the 

allocation threshold time. Then, the firm may offer more prompt service instead of saving 

the cost for lost sales.

Proof. Observe

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proposition 3.7. Given a cycle time T , the static analysis fo r  the allocation threshold 

time: a) t* increases in p t; b) t* increases in a , ; c) t* increases in bi ; d) t* decreases

in h ; e) t* decreases in /? ;  f)  t* increases in or,., i f
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(!'“  a i ) ( Pi + ai ~ c ) + a ibi ( T - t ) - h t  

( pi +ai - c )
(  (  , ^  Pi + a , - c  _bL + aL

\  v  
/

2(7’ — /) 2 2ftt

+Pi
P i+ ai- c  b, | a,

J )

P i + a i ~ c  + bL_ a L
2 ( T - t )  2 2f t  X  2 ( 7 - f )  2 2f t

( T - t ) - h t

z l = 0

^ * l ~ a i

i - q ;  
. f t

+ h ( T - t ) - h t
1 - a

z» =■
f t

(1 - a i) ( p i +ai - c )  + a f t  ( T - t ) - h t  

4(7’- / )  ^ ^ \y,  , jv 2 2 y
/ ,  N2

h - S L  
. 2  2/ t ,

/

(7’ — /) — */

z := o

« * i _ a i

1-<X

f t
L+ k ( T - t ) - h t

* 1 -a ,
z,> =  ■

" f t

Consider the first order condition on p t , we have

dp(

(1 -a ,.) z „ = 0

. fiih l^ L = £ .+ l .S L + m .  0 < C < l ~ a
2 ( T - t ) 2 2

0

f t
1

" A
Z/, =

= i - r , > o

The result in a) holds, since the value of w,. (t,z*,|r) as well as the solution of 

wi (*> z *u | - )̂ =  ® increases in p t . Similarly, the result in b) holds from

da. dpi
>0

The result in c) holds from
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dw,( t ’Z„\T ) _
dh

< T - t )

4 ( p , + a , - c ) V #
r , ah a.

a f t T - t )

P
(  *

z‘ +i

(:T - t )

>0

The result in d) holds from 

dwl (t ’Z*\r'J

dh
= - t<  0 .

( T - t )
I /

( T - t )

z >  0

( r - 0  o < z l <
1 - a

Pi 
1 - a t

~P

zl =0

n * l ~ a i 
» < * < - -

1 - a
z it = ■

P i

The result in e) holds from
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dw.
I * *

0

( p t +Oi -c )  h , s
/ x +  ( P i + a i - C )  4 ( T - t )  2 ‘ '

2 2 #
rbt a, A

K ’ P \ 2  2#
( T - t )

= 0

.  , l-o r
0 < Z,* < _ 7T^

P

r.   ̂l-or.

o,
( T - t )

V r ' i

I -  or. 
Z"’ ~ fit

zi t= 0

-  / v +  —  ( P i + a i ~ C )  +4 ( T - t )  2 ' '
Y - |V f  

U J

A

v 2A ,  

( T - t )

( T - t )
l - a ,

<»<*.< *

l-o r ;
z«r=-

V r ’i P i

0 * := o

or

Z" + ^
+

r \ 2 O'.

a . \1-or,.

A

V2A ,

(r-t)

(r-i) o<z;< l - a ,

V f ' i

P i

1

'' /?
=

<0

Focus on the effect at time t*, the result in f) holds from
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j r )  _

da,

~{Pi  + a i ~ c) + bj ( T - t ) Zu =  0

- ± ( p , + a , . - c ) -
or,

2 2/? (r - r)  o < 4 <
l-< x

i /

( r - 0

-(/? ,.+ a ,.-c )  + ̂ . ( r - r )  4 = 0
l - a

( - 4 + ^ ) ( r _ 0  0 < z «*<

1 ( r - r )
£  

1 - q  
£

Z|« =■

£  
1 - ^

Pi

The static analysis for base stock follows directly from Proposition 3.7 and 

2* = . However, the static analysis for cycle time is very complex as illustrated

in the following two notes.

Note 3.1. The static analysis fo r  the cycle time on the price pr

Analysis: Observe the first order condition on T (dY \/dT ) - F I , we have similar to the 

prove in Proposition 3.7

a [ t  (an /d r ) -n+ k ]

- i :*

=i :,a

= z : , a

Ap,

J & ( p , - c - h t ; ) \ .TA z ,( T ,y l ,z l \T )

Ad A hAP, 

At'

d r
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Since t* increases in pi from Proposition 3.7 a), we have — L > 0 . However, the value
a A

A ?  *
of — -  is not clear, since t* is determined by a complex implied function. Thus, we do 

4Pi

& { T ( d n / d T ) - n + K l
not know whether or not —-— ---------     is positive and whether or not T

APi

increases in pj .

Note 3.2. The static analysis fo r  the cycle time on the price h .

Analysis: We have similar to Remark 3.2

A [r ( a n /a r ) - n  + £ ]

= r . , 4

= r , 4

Ah
f

T
v

, (p i - c - h t * ) '] r A ^ ,.(r ,y ,;,z ,; |r)
A h  Jo A hAh Jo Ah

dr

\
{ *\  

T - h -  

v  2 y
t  - T h K

Ah

Since t* decreases in h from Proposition 3.7 d), Thus, similar to the reason in Remark 

3.1, we do not know whether or not T  decreases in h.  ■

3.4.5. Managerial Insights and Numerical Analysis

We experiment with the following data set: c = 1, h = 0.5 , K  = 200, N  = 2,  

4 + ^ = 1 0 ,  a  = (0 .5 ,5), b = (0.01,0.1), a  = (0.8,0.0), ,0 = (10,0.1) and p  = (10,20).

Increasing the percentage of class 1 customer from 50% to 100%, we report the profits as 

the percentage of Rd policy, the fill rates of all demands, the base stock level and the 

cycle time in Figures 3.1 (a) (d).
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Figure 3.1 (a) illustrates both rationing and price discounting increases the profit 

significantly. The RD policy can increase the profit up to 30% from the FCFS policy 

without price discounting. In Figure 3.1 (b), the price discount improves the total fill rate 

from 80% to 100%.

As shown in Figure 3.1 (c) and 3.1 (d), the RD policy reduces the base stock levels in 

this example, but the cycle time may be increased or decreased at different demand ratio 

by the effect of rationing and pricing discount. For the policies without price discounts, 

the cycle times may be shorten for the sake of reducing the lost sales penalty or holding 

cost when there are plenty of high profit customers. When the ratio of high profit 

customer becomes very small, the firm may focus on the service for the lower profit 

customers. For the policy without price discount, the accumulative backlogging cost is 

low and the firm may increase the cycle time to reduce the setup cost. The effect of 

rationing on the cycle time is at similar situation.

Figure 3.1. (d) also tell us that the cycle time may be sensitive to the demand ratio. 

So, it may not easy to estimate an accurate cycle time if ignoring this kind of sensitivity. 

The optimal cycle time may be far away from the related solution of single class problem. 

This implies, the performance of multi-class problem is quite different from the 

traditional single class EOQ model.

& 1.00 
tf

g  0 . 9 0
o

»  0 . 8 0  cu

£  0. 70 

£  0 . 6 0
0 . 5  0 . 6  0 . 7  0 . 8  0 . 9  1

Demand Ratio: Class 1 : 2
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RD P=0 

-*--- FCFS P=0

Figure 3.1 Vary the percentage of class 1 customer from 50% to 100% and compare: 

(a). Perfect as Percentage; (b) Total Fill Rate; (c). Base Stock Level; (d). Cycle Time.
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3.5 Conclusions

The model in this paper considers the partial backlogging case for multiple customer 

class inventory system where the likelihood of backlogging is linearly dependent on a 

discount offered. We focus on the deterministic demand problems in a generalized EOQ 

model.

Previous research (Moon and Kang 1998) provides an optimal rationing level in a 

continuous review policy for an EOQ model with two customer classes and the 

unfulfilled demands completely backordered, while the value of order quantity and 

reorder point are given constants.

In this paper, we propose an optimal rationing and discounting policy for the EOQ 

model with multi-class customers. We use the intuitive concept of prompt service welfare 

to find the optimal price discounts and the optimal rationing policy given the cycle time. 

Then, the optimal order policy is determined from the first order condition on the cycle 

time. The numerical analysis illustrates that both inventory rationing and price 

discounting can increase the average profit and the customer fill rates significantly by 

comparing the results from the no price discounting policy and the naive first come / first 

serve policy. In the future research, we can apply the generalized EOQ policies for the 

time varying demand and multi-stage problems. It is also interesting and hopeful to apply 

this kind of approach to solve the corresponded problems with stochastic demands in the 

future research.
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